ترغب بنشر مسار تعليمي؟ اضغط هنا

Hole polaron formation and migration in olivine phosphate materials

101   0   0.0 ( 0 )
 نشر من قبل Michelle Johannes
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By combining first principles calculations and experimental XPS measurements, we investigate the electronic structure of potential Li-ion battery cathode materials LiMPO4 (M=Mn,Fe,Co,Ni) to uncover the underlying mechanisms that determine small hole polaron formation and migration. We show that small hole polaron formation depends on features in the electronic structure near the valence-band maximum and that, calculationally, these features depend on the methodology chosen for dealing with the correlated nature of the transition-metal d-derived states in these systems. Comparison with experiment reveals that a hybrid functional approach is superior to GGA+U in correctly reproducing the XPS spectra. Using this approach we find that LiNiPO4 cannot support small hole polarons, but that the other three compounds can. The migration barrier is determined mainly by the strong or weak bonding nature of the states at the top of the valence band, resulting in a substantially higher barrier for LiMnPO4 than for LiCoPO4 or LiFePO4.

قيم البحث

اقرأ أيضاً

Oxides with $4d$/$5d$ transition metal ions are physically interesting for their particular crystalline structures as well as the spin-orbit coupled electronic structures. Recent experiments revealed a series of $4d$/$5d$ transition metal oxides $R_3 M$O$_7$ ($R$: rare earth; $M$: $4d$/$5d$ transition metal) with unique quasi-one-dimensional $M$ chains. Here first-principles calculations have been performed to study the electronic structures of La$_3$OsO$_7$ and La$_3$RuO$_7$. Our study confirm both of them to be Mott insulating antiferromagnets with identical magnetic order. The reduced magnetic moments, which are much smaller than the expected value for ideal high-spin state ($3$ $t_{2g}$ orbitals occupied), are attributed to the strong $p-d$ hybridization with oxygen ions, instead of the spin-orbit coupling. The Ca-doping to La$_3$OsO$_7$ and La$_3$RuO$_7$ can not only modulate the nominal carrier density but also affect the orbital order as well as the local distortions. The Coulombic attraction and particular orbital order would prefer to form polarons, which might explain the puzzling insulating behavior of doped $5d$ transition metal oxides. In addition, our calculation predict that the Ca-doping can trigger ferromagnetism in La$_3$RuO$_7$ but not in La$_3$OsO$_7$.
The anomalously large dielectric aging in ferroelectric partially deuterated potassium dihydrogen phosphate (DKDP) is found to have multiple distinct mechanisms. Two components cause decreases in dielectric response over a limited range of fields aro und the aging field. A large fraction of this aging occurs on time scales of ~1000s after a field change, as expected for a hydrogen/deuterium diffusion mechanism. A slower component can give almost complete loss of domain-wall dielectric response at the aging field after weeks of aging. There is also a particularly unusual aging in which the dielectric response increases with time after rapid cooling.
50 - J. H. Jiang , M. W. Wu , M. Nagai 2004
We study the formation and decay of electron-hole droplets in diamonds at both low and high temperatures under different excitations by master equations. The calculation reveals that at low temperature the kinetics of the system behaves as in direct- gap semiconductors, whereas at high temperature it shows metastability as in traditional indirect-gap semiconductors. Our results at low temperature are consistent with the experimental findings by Nagai {em et al.} [Phys. Rev. B {bf 68}, 081202 (R) (2003)]. The kinetics of the e-h system in diamonds at high temperature under both low and high excitations is also predicted.
Charge migration is a ubiquitous phenomenon with profound implications throughout many areas of chemistry, physics, biology and materials science. The long-term vision of designing functional materials with tailored molecular scale properties has tri ggered an increasing quest to identify prototypical systems where truly molecular conduction pathways play a fundamental role. Such pathways can be formed due to the molecular organization of various organic materials and are widely used to discuss electronic properties at the nanometer scale. Here, we present a computational methodology to study charge propagation in organic molecular stacks at nano and sub-nanoscales and exploit this methodology to demonstrate that moving charge carriers strongly affect the values of the physical quantities controlling their motion. The approach is also expected to find broad application in the field of charge migration in soft matter systems.
155 - Hong-Jian Feng , Fa-Min Liu 2007
First-principles calculation predict that olivine Li4MnFeCoNiP4O16 has ferrotoroidic characteristic and ferrimagnetic configuration with magnetic moment of 1.56 muB per formula unit. The ferrotoroidicity of this material makes it a potential candidat e for magnetoelectric materials . Based on the orbital-resolved density of states for the transtion-metal ions in Li4MnFeCoNiP4O16, the spin configuration for Mn2+,Fe3+,Co2+, and Ni2+ is t2g3eg2, t2g3eg2,t2g1t2g3eg1eg2, and t2g2t2g3eg1eg2, respectively. Density functional theory plus U (DFT+U) shows a indirect band gap of 1.25 eV in this predicted material, which is not simply related to the electronic conductivity in terms of being used as cathode material in rechargeable Li-ion batteries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا