ﻻ يوجد ملخص باللغة العربية
State-of-the-art predictions for the Higgs-boson production cross section via gluon fusion and for all relevant Higgs-boson decay channels are presented in the presence of a fourth Standard-Model-like fermion generation. The qualitative features of the most important differences to the genuine Standard Model are pointed out, and the use of the available tools for the predictions is described. For a generic mass scale of 400-600 GeV in the fourth generation explicit numerical results for the cross section and decay widths are presented, revealing extremely large electroweak radiative corrections, e.g., to the cross section and the Higgs decay into WW or ZZ pairs, where they amount to about -50% or more. This signals the onset of a non-perturbative regime due to the large Yukawa couplings in the fourth generation. An estimate of the respective large theoretical uncertainties is presented as well.
We use sampling techniques to find robust constraints on the masses of a possible fourth sequential fermion generation from electroweak oblique variables. We find that in the case of a light (115 GeV) Higgs from a single electroweak symmetry breaking
We investigate the effect of introducing a sequential generation of chiral fermions in the Higgs Triplet Model with nontrivial mixing between the doublet and triplet Higgs. We use the available LHC data for Higgs boson production and decay rates, the
In the minimal Standard Model (SM) with four generations (the so called SM4) and in standard two Higgs doublets model (2HDM) setups, e.g., the type II 2HDM with four fermion generations, the contribution of the 4th family heavy leptons to the muon ma
We present an update of the branching ratios for Higgs-boson decays in the Standard Model. We list results for all relevant branching ratios together with corresponding uncertainties resulting from input parameters and missing higher-order correction
We analyse the consequences of the little Higgs model for double Higgs boson production at the LHC and for the partial decay width of the Higgs into two photons. In particular, we study the sensitivity of these processes in terms of the parameters of