The two-dimensional electron gas (2DEG) at the interface between LaAlO$_3$ (LAO) and SrTiO$_3$ (STO) has become one of the most fascinating and highly-debated oxide systems of recent times. Here we propose that a one-dimensional electron gas (1DEG) can be engineered at the step edges of the LAO/STO interface. These predictions are supported by first principles calculations and electrostatic modeling which elucidate the origin of the 1DEG as an electronic reconstruction to compensate a net surface charge in the step edge. The results suggest a novel route to increasing the functional density in these electronic interfaces.
Strong Rashba spin-orbit coupling (SOC) of the two-dimensional electron gas (2DEG) at the oxide interface $mathrm{LaAlO_{3}/SrTiO_{3}}$ underlies a variety of exotic physics, but its nature is still under debate. We derive an effective Hamiltonian fo
r the 2DEG at the oxide interface $mathrm{LaAlO_{3}/SrTiO_{3}}$ and find a different anisotropic Rashba SOC for the $d_{xz}$ and $d_{yz}$ orbitals. This anisotropic Rashba SOC leads to anisotropic static spin susceptibilities and also distinctive behavior of the spin Hall conductivity. These unique spin responses may be used to determine the nature of the Rashba SOC experimentally and shed light on the orbital origin of the 2DEG.
The paradigm of electrons interacting with a periodic lattice potential is central to solid-state physics. Semiconductor heterostructures and ultracold neutral atomic lattices capture many of the essential properties of 1D electronic systems. However
, fully one-dimensional superlattices are highly challenging to fabricate in the solid state due to the inherently small length scales involved. Conductive atomic-force microscope (c-AFM) lithography has recently been demonstrated to create ballistic few-mode electron waveguides with highly quantized conductance and strongly attractive electron-electron interactions. Here we show that artificial Kronig-Penney-like superlattice potentials can be imposed on such waveguides, introducing a new superlattice spacing that can be made comparable to the mean separation between electrons. The imposed superlattice potential fractures the electronic subbands into a manifold of new subbands with magnetically-tunable fractional conductance (in units of $e^2/h$). The lowest $G=2e^2/h$ plateau, associated with ballistic transport of spin-singlet electron pairs, is stable against de-pairing up to the highest magnetic fields explored ($|B|=16$ T). A 1D model of the system suggests that an engineered spin-orbit interaction in the superlattice contributes to the enhanced pairing observed in the devices. These findings represent an important advance in the ability to design new families of quantum materials with emergent properties, and mark a milestone in the development of a solid-state 1D quantum simulation platform.
We report the angular dependence of magnetoresistance in two-dimensional electron gas at LaAlO$_3$/SrTiO$_3$ interface. We find that this interfacial magnetoresistance exhibits a similar angular dependence to the spin Hall magnetoresistance observed
in ferromagnet/heavy metal bilayers, which has been so far discussed in the framework of bulk spin Hall effect of heavy metal layer. The observed magnetoresistance is in qualitative agreement with theoretical model calculation including both Rashba spin-orbit coupling and exchange interaction. Our result suggests that magnetic interfaces subject to spin-orbit coupling can generate a nonnegligible contribution to the spin Hall magnetoresistance and the interfacial spin-orbit coupling effect is therefore key to the understanding of various spin-orbit-coupling-related phenomena in magnetic/non-magnetic bilayers.
Novel physical phenomena arising at the interface of complex oxide heterostructures offer exciting opportunities for the development of future electronic devices. Using the prototypical LaAlO$_3$/SrTiO$_3$ interface as a model system, we employ a sin
gle-step lithographic process to realize gate tunable Josephson junctions through a combination of lateral confinement and local side gating. The action of the side gates is found to be comparable to that of a local back gate, constituting a robust and efficient way to control the properties of the interface at the nanoscale. We demonstrate that the side gates enable reliable tuning of both the normal-state resistance and the critical (Josephson) current of the constrictions. The conductance and Josephson current show mesoscopic fluctuations as a function of the applied side gate voltage, and the analysis of their amplitude enables the extraction of the phase coherence and thermal lengths. Finally, we realize a superconducting quantum interference device in which the critical currents of each of the constriction-type Josephson junctions can be controlled independently via the side gates.
We have studied the electronic properties of the 2D electron liquid present at the LaAlO$_3$/SrTiO$_3$ interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650{deg}C exhibit the highest lo
w temperature mobility ($approx 10000 textrm{ cm}^2/textrm{Vs}$) and the lowest sheet carrier density ($approx 5times 10^{12} textrm{ cm}^{-2}$). These samples show metallic behavior and Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at higher temperatures (800-900{deg}C) display carrier densities in the range of $approx 2-5 times 10^{13} textrm{ cm}^{-2}$ and mobilities of $approx 1000 textrm{ cm}^2/textrm{Vs}$ at 4K. Reducing their carrier density by field effect to $8times 10^{12} textrm{ cm}^{-2}$ lowers their mobilites to $approx 50 textrm{ cm}^2/textrm{Vs}$ bringing the conductance to the weak-localization regime.
N. C. Bristowe
,T. Fix
,M. G. Blamire
.
(2011)
.
"Proposal of a one-dimensional electron gas in the steps at the LaAlO$_3$-SrTiO$_3$ interface"
.
Nicholas Bristowe
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا