ترغب بنشر مسار تعليمي؟ اضغط هنا

Large time behaviour of higher dimensional logarithmic diffusion equation

95   0   0.0 ( 0 )
 نشر من قبل Kin Ming Hui
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $nge 3$ and $psi_{lambda_0}$ be the radially symmetric solution of $Deltalogpsi+2betapsi+beta xcdot ablapsi=0$ in $R^n$, $psi(0)=lambda_0$, for some constants $lambda_0>0$, $beta>0$. Suppose $u_0ge 0$ satisfies $u_0-psi_{lambda_0}in L^1(R^n)$ and $u_0(x)approxfrac{2(n-2)}{beta}frac{log |x|}{|x|^2}$ as $|x|toinfty$. We prove that the rescaled solution $widetilde{u}(x,t)=e^{2beta t}u(e^{beta t}x,t)$ of the maximal global solution $u$ of the equation $u_t=Deltalog u$ in $R^ntimes (0,infty)$, $u(x,0)=u_0(x)$ in $R^n$, converges uniformly on every compact subset of $R^n$ and in $L^1(R^n)$ to $psi_{lambda_0}$ as $ttoinfty$. Moreover $|widetilde{u}(cdot,t)-psi_{lambda_0}|_{L^1(R^n)} le e^{-(n-2)beta t}|u_0-psi_{lambda_0}|_{L^1(R^n)}$ for all $tge 0$.


قيم البحث

اقرأ أيضاً

Let $OmegasubsetR^n$ be a smooth bounded domain and let $a_1,a_2,dots,a_{i_0}inOmega$, $widehat{Omega}=Omegasetminus{a_1,a_2,dots,a_{i_0}}$ and $widehat{R^n}=R^nsetminus{a_1,a_2,dots,a_{i_0}}$. We prove the existence of solution $u$ of the fast diffu sion equation $u_t=Delta u^m$, $u>0$, in $widehat{Omega}times (0,infty)$ ($widehat{R^n}times (0,infty)$ respectively) which satisfies $u(x,t)toinfty$ as $xto a_i$ for any $t>0$ and $i=1,cdots,i_0$, when $0<m<frac{n-2}{n}$, $ngeq 3$, and the initial value satisfies $0le u_0in L^p_{loc}(2{Omega}setminus{a_1,cdots,a_{i_0}})$ ($u_0in L^p_{loc}(widehat{R^n})$ respectively) for some constant $p>frac{n(1-m)}{2}$ and $u_0(x)ge lambda_i|x-a_i|^{-gamma_i}$ for $xapprox a_i$ and some constants $gamma_i>frac{2}{1-m},lambda_i>0$, for all $i=1,2,dots,i_0$. We also find the blow-up rate of such solutions near the blow-up points $a_1,a_2,dots,a_{i_0}$, and obtain the asymptotic large time behaviour of such singular solutions. More precisely we prove that if $u_0gemu_0$ on $widehat{Omega}$ ($widehat{R^n}$, respectively) for some constant $mu_0>0$ and $gamma_1>frac{n-2}{m}$, then the singular solution $u$ converges locally uniformly on every compact subset of $widehat{Omega}$ (or $widehat{R^n}$ respectively) to infinity as $ttoinfty$. If $u_0gemu_0$ on $widehat{Omega}$ ($widehat{R^n}$, respectively) for some constant $mu_0>0$ and satisfies $lambda_i|x-a_i|^{-gamma_i}le u_0(x)le lambda_i|x-a_i|^{-gamma_i}$ for $xapprox a_i$ and some constants $frac{2}{1-m}<gamma_ilegamma_i<frac{n-2}{m}$, $lambda_i>0$, $lambda_i>0$, $i=1,2,dots,i_0$, we prove that $u$ converges in $C^2(K)$ for any compact subset $K$ of $2{Omega}setminus{a_1,a_2,dots,a_{i_0}}$ (or $widehat{R^n}$ respectively) to a harmonic function as $ttoinfty$.
Let $u$ be the solution of $u_t=Deltalog u$ in $R^Ntimes (0,T)$, N=3 or $Nge 5$, with initial value $u_0$ satisfying $B_{k_1}(x,0)le u_0le B_{k_2}(x,0)$ for some constants $k_1>k_2>0$ where $B_k(x,t) =2(N-2)(T-t)_+^{N/(N-2)}/(k+(T-t)_+^{2/(N-2)}|x|^2 )$ is the Barenblatt solution for the equation. We prove that the rescaled function $4{u}(x,s)=(T-t)^{-N/(N-2)}u(x/(T-t)^{-1/(N-2)},t)$, $s=-log (T-t)$, converges uniformly on $R^N$ to the rescaled Barenblatt solution $4{B}_{k_0}(x)=2(N-2)/(k_0+|x|^2)$ for some $k_0>0$ as $stoinfty$. We also obtain convergence of the rescaled solution $4{u}(x,s)$ as $stoinfty$ when the initial data satisfies $0le u_0(x)le B_{k_0}(x,0)$ in $R^N$ and $|u_0(x)-B_{k_0}(x,0)|le f(|x|)in L^1(R^N)$ for some constant $k_0>0$ and some radially symmetric function $f$.
111 - Kin Ming Hui 2009
Let $0le u_0(x)in L^1(R^2)cap L^{infty}(R^2)$ be such that $u_0(x) =u_0(|x|)$ for all $|x|ge r_1$ and is monotone decreasing for all $|x|ge r_1$ for some constant $r_1>0$ and ${ess}inf_{2{B}_{r_1}(0)}u_0ge{ess} sup_{R^2setminus B_{r_2}(0)}u_0$ for so me constant $r_2>r_1$. Then under some mild decay conditions at infinity on the initial value $u_0$ we will extend the result of P. Daskalopoulos, M.A. del Pino and N. Sesum cite{DP2}, cite{DS}, and prove the collapsing behaviour of the maximal solution of the equation $u_t=Deltalog u$ in $R^2times (0,T)$, $u(x,0)=u_0(x)$ in $R^2$, near its extinction time $T=int_{R^2}u_0dx/4pi$.
113 - Kin Ming Hui 2014
Let $nge 3$, $0<m<frac{n-2}{n}$, $rho_1>0$, $betagefrac{mrho_1}{n-2-nm}$ and $alpha=frac{2beta+rho_1}{1-m}$. For any $lambda>0$, we will prove the existence and uniqueness (for $betagefrac{rho_1}{n-2-nm}$) of radially symmetric singular solution $g_{ lambda}in C^{infty}(R^nsetminus{0})$ of the elliptic equation $Delta v^m+alpha v+beta xcdot abla v=0$, $v>0$, in $R^nsetminus{0}$, satisfying $displaystylelim_{|x|to 0}|x|^{alpha/beta}g_{lambda}(x)=lambda^{-frac{rho_1}{(1-m)beta}}$. When $beta$ is sufficiently large, we prove the higher order asymptotic behaviour of radially symmetric solutions of the above elliptic equation as $|x|toinfty$. We also obtain an inversion formula for the radially symmetric solution of the above equation. As a consequence we will prove the extinction behaviour of the solution $u$ of the fast diffusion equation $u_t=Delta u^m$ in $R^ntimes (0,T)$ near the extinction time $T>0$.
181 - Kin Ming Hui , Soojung Kim 2015
We study the asymptotic large time behavior of singular solutions of the fast diffusion equation $u_t=Delta u^m$ in $({mathbb R}^nsetminus{0})times(0,infty)$ in the subcritical case $0<m<frac{n-2}{n}$, $nge3$. Firstly, we prove the existence of singu lar solution $u$ of the above equation that is trapped in between self-similar solutions of the form of $t^{-alpha} f_i(t^{-beta}x)$, $i=1,2$, with initial value $u_0$ satisfying $A_1|x|^{-gamma}le u_0le A_2|x|^{-gamma}$ for some constants $A_2>A_1>0$ and $frac{2}{1-m}<gamma<frac{n-2}{m}$, where $beta:=frac{1}{2-gamma(1-m)}$, $alpha:=frac{2beta-1}{1-m},$ and the self-similar profile $f_i$ satisfies the elliptic equation $$ Delta f^m+alpha f+beta xcdot abla f=0quad mbox{in ${mathbb R}^nsetminus{0}$} $$ with $lim_{|x|to0}|x|^{frac{ alpha}{ beta}}f_i(x)=A_i$ and $lim_{|x|toinfty}|x|^{frac{n-2}{m}}{f_i}(x)= D_{A_i} $ for some constants $D_{A_i}>0$. When $frac{2}{1-m}<gamma<n$, under an integrability condition on the initial value $u_0$ of the singular solution $u$, we prove that the rescaled function $$ tilde u(y,tau):= t^{,alpha} u(t^{,beta} y,t),quad{ tau:=log t}, $$ converges to some self-similar profile $f$ as $tautoinfty$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا