ﻻ يوجد ملخص باللغة العربية
We study a one-step approach to the fast generation of Greenberger-Horne-Zeilinger (GHZ) states in a circuit QED system with superconducting flux qubits. The GHZ state can be generated in about 10 ns, which is much shorter than the coherence time of flux qubits and comparable with the time of single-qubit operation. In our proposal, a time-dependent microwave field is applied to a superconducting transmission line resonator (TLR) and displaces the resonator in a controlled manner, thus inducing indirect qubit-qubit coupling without residual entanglement between the qubits and the resonator. The design of a tunably coupled TLR circle array provides us with the potential for extending this one-step scheme to the case of many qubits coupled via several TLRs.
It is sketched how a monostable rf- or dc-SQUID can mediate an inductive coupling between two adjacent flux qubits. The nontrivial dependence of the SQUIDs susceptibility on external flux makes it possible to continuously tune the induced coupling fr
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization
A maximally entangled state is a quantum state which has maximum von Neumann entropy for each bipartition. Through proposing a new method to classify quantum states by using concurrences of pure states of a region, one can apply Bells inequality to s
We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively couple
Quantum computing hardware has received world-wide attention and made considerable progress recently. YIG thin film have spin wave (magnon) modes with low dissipation and reliable control for quantum information processing. However, the coherent coup