ﻻ يوجد ملخص باللغة العربية
In this paper we study the existence and the instability of standing waves with prescribed $L^2$-norm for a class of Schrodinger-Poisson-Slater equations in $R^{3}$ %orbitally stable standing waves with arbitray charge for the following Schrodinger-Poisson type equation label{evolution1} ipsi_{t}+ Delta psi - (|x|^{-1}*|psi|^{2}) psi+|psi|^{p-2}psi=0 % text{in} R^{3}, when $p in (10/3,6)$. To obtain such solutions we look to critical points of the energy functional $$F(u)=1/2| triangledown u|_{L^{2}(mathbb{R}^3)}^2+1/4int_{mathbb{R}^3}int_{mathbb{R}^3}frac{|u(x)|^2| u(y)|^2}{|x-y|}dxdy-frac{1}{p}int_{mathbb{R}^3}|u|^pdx $$ on the constraints given by $$S(c)= {u in H^1(mathbb{R}^3) :|u|_{L^2(R^3)}^2=c, c>0}.$$ For the values $p in (10/3, 6)$ considered, the functional $F$ is unbounded from below on $S(c)$ and the existence of critical points is obtained by a mountain pass argument developed on $S(c)$. We show that critical points exist provided that $c>0$ is sufficiently small and that when $c>0$ is not small a non-existence result is expected. Concerning the dynamics we show for initial condition $u_0in H^1(R^3)$ of the associated Cauchy problem with $|u_0|_{2}^2=c$ that the mountain pass energy level $gamma(c)$ gives a threshold for global existence. Also the strong instability of standing waves at the mountain pass energy level is proved. Finally we draw a comparison between the Schrodinger-Poisson-Slater equation and the classical nonlinear Schrodinger equation.
In this paper we establish the orbital stability of standing wave solutions associated to the one-dimensional Schrodinger-Kirchhoff equation. The presence of a mixed term gives us more dispersion, and consequently, a different scenario for the stabil
We study the instability of standing-wave solutions $e^{iomega t}phi_{omega}(x)$ to the inhomogeneous nonlinear Schr{o}dinger equation $$iphi_t=-trianglephi+|x|^2phi-|x|^b|phi|^{p-1}phi, qquad inmathbb{R}^N, $$ where $ b > 0 $ and $ phi_{omega} $ is
We are going to study the standing waves for a generalized Choquard equation with potential: $$ -ipartial_t u-Delta u+V(x)u=(|x|^{-mu}ast|u|^p)|u|^{p-2}u, hbox{in} mathbb{R}timesmathbb{R}^3, $$ where $V(x)$ is a real function, $0<mu<3$, $2-mu/3<p<
This article concerns the fractional elliptic equations begin{equation*}(-Delta)^{s}u+lambda V(x)u=f(u), quad uin H^{s}(mathbb{R}^N), end{equation*}where $(-Delta)^{s}$ ($sin (0,,,1)$) denotes the fractional Laplacian, $lambda >0$ is a parameter, $
This paper is devoted to study the existence and multiplicity solutions for the nonlinear Schrodinger-Poisson systems involving fractional Laplacian operator: begin{equation}label{eq*} left{ aligned &(-Delta)^{s} u+V(x)u+ phi u=f(x,u), quad &te