ترغب بنشر مسار تعليمي؟ اضغط هنا

Straightening the Density-Displacement Relation with a Logarithmic Transform

37   0   0.0 ( 0 )
 نشر من قبل Bridget Falck
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the use of a logarithmic density variable in estimating the Lagrangian displacement field, motivated by the success of a logarithmic transformation in restoring information to the matter power spectrum. The logarithmic relation is an extension of the linear relation, motivated by the continuity equation, in which the density field is assumed to be proportional to the divergence of the displacement field; we compare the linear and logarithmic relations by measuring both of these fields directly in a cosmological N-body simulation. The relative success of the logarithmic and linear relations depends on the scale at which the density field is smoothed. Thus we explore several ways of measuring the density field, including Cloud-In-Cell smoothing, adaptive smoothing, and the (scale-independent) Delaunay tessellation, and we use both a Fourier space and a geometrical tessellation approach to measuring the divergence. We find that the relation between the divergence of the displacement field and the density is significantly tighter with a logarithmic density variable, especially at low redshifts and for very small (~2 Mpc/h) smoothing scales. We find that the grid-based methods are more reliable than the tessellation-based method of calculating both the density and the divergence fields, though in both cases the logarithmic relation works better in the appropriate regime, which corresponds to nonlinear scales for the grid-based methods and low densities for the tessellation-based method.

قيم البحث

اقرأ أيضاً

We consider a simple modification of quadratic chaotic inflation. We add a logarithmic correction to the mass term, and find that this model can be consistent with the latest cosmological observations such as the Planck 2018 data, in combination with the BICEP2/Keck Array and the baryon acoustic oscillation data. Since the model predicts the lower limit for the tensor-to-scalar ratio r for the present allowed values of the spectral index n_s, it could be tested by the cosmic microwave background polarization observation in the near future. In addition, we consider higher-order logarithmic corrections. Interestingly, we observe that the scalar spectral index n_s and r stay in rather a narrow region of the parameter space. Moreover, they reside in a completely different region from that for the logarithmic corrections to the quartic coupling. Therefore, future observations may distinguish which kind of corrections should be included, or even single out the form of the interactions.
Recent work has shown that the star formation-density relation -- in which galaxies with low star formation rates are preferentially found in dense environments -- is still in place at z~1, but the situation becomes less clear at higher redshifts. We use mass-selected samples drawn from the UKIDSS Ultra-Deep Survey to show that galaxies with quenched star formation tend to reside in dense environments out to at least z~1.8. Over most of this redshift range we are able to demonstrate that this star formation-density relation holds even at fixed stellar mass. The environmental quenching of star formation appears to operate with similar efficiency on all galaxies regardless of stellar mass. Nevertheless, the environment plays a greater role in the build-up of the red sequence at lower masses, whereas other quenching processes dominate at higher masses. In addition to a statistical analysis of environmental densities, we investigate a cluster at z=1.6, and show that the central region has an elevated fraction of quiescent objects relative to the field. Although the uncertainties are large, the environmental quenching efficiency in this cluster is consistent with that of galaxy groups and clusters at z~0. In this work we rely on photometric redshifts, and describe some of the pitfalls that large redshift errors can present.
A coherently oscillating real scalar field with potential shallower than quadratic one fragments into spherical objects called I-balls. We study the I-ball formation for logarithmic potential which appears in many cosmological models. We perform latt ice simulations and find that the I-balls are formed when the potential becomes dominated by the quadratic term. Furthermore, we estimate the I-ball profile assuming that the adiabatic invariant is conserved during formation and obtain the result that agrees to the numerical simulations.
53 - Alessandro Roggero 2020
The spectral density operator $hat{rho}(omega)=delta(omega-hat{H})$ plays a central role in linear response theory as its expectation value, the dynamical response function, can be used to compute scattering cross-sections. In this work, we describe a near optimal quantum algorithm providing an approximation to the spectral density with energy resolution $Delta$ and error $epsilon$ using $mathcal{O}left(sqrt{logleft(1/epsilonright)left(logleft(1/Deltaright)+logleft(1/epsilonright)right)}/Deltaright)$ operations. This is achieved without using expensive approximations to the time-evolution operator but exploiting instead qubitization to implement an approximate Gaussian Integral Transform (GIT) of the spectral density. We also describe appropriate error metrics to assess the quality of spectral function approximations more generally.
66 - J.-M. Andre 2011
We use the Kramers-Kronig transform (KKT) with logarithmic kernel to obtain the reflection phase and, subsequently, the complex refractive index of a bulk mirror from reflectance. However, there remains some confusion regarding the formulation for th is analysis. Assuming the damped Drude model for the dielectric constant and the oblique incidence case, we calculate the additional terms: phase at zero frequency and Blashke factor and we propose a reformulated KKT within this model. Absolute reflectance in the s-polarization case of a gold film is measured between 40 and 350 eV for various glancing angles using synchrotron radiation and its complex refractive index is deduced using the reformulated KKT that we propose. The results are discussed with respect to the data available in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا