ترغب بنشر مسار تعليمي؟ اضغط هنا

Extragalactic propagation of ultrahigh energy cosmic-rays

181   0   0.0 ( 0 )
 نشر من قبل Denis Allard
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Denis Allard




اسأل ChatGPT حول البحث

In this paper we review the extragalactic propagation of ultrahigh energy cosmic-rays (UHECR). We present the different energy loss processes of protons and nuclei, and their expected influence on energy evolution of the UHECR spectrum and composition. We discuss the possible implications of the recent composition analyses provided by the Pierre Auger Observatory. The influence of extragalactic magnetic fields and possible departures from the rectilinear case are also mentioned as well as the production of secondary cosmogenic neutrinos and photons and the constraints their observation would imply for the UHECRs origin. Finally, we conclude by briefly discussing the relevance of a multi messenger approach for solving the mystery of UHECRs.



قيم البحث

اقرأ أيضاً

162 - Daniel Kuempel 2014
More than 100 years after the discovery of cosmic rays and various experimental efforts, the origin of ultra-high energy cosmic rays (E > 100 PeV) remains unclear. The understanding of production and propagation effects of these highest energetic par ticles in the universe is one of the most intense research fields of high-energy astrophysics. With the advent of advanced simulation engines developed during the last couple of years, and the increase of experimental data, we are now in a unique position to model source and propagation parameters in an unprecedented precision and compare it to measured data from large scale observatories. In this paper we revisit the most important propagation effects of cosmic rays through photon backgrounds and magnetic fields and introduce recent developments of propagation codes. Finally, by comparing the results to experimental data, possible implications on astrophysical parameters are given.
This is a review of the most resent results from the investigation of the Ultrahigh Energy Cosmic Rays, particles of energy exceeding 10$^{18}$ eV. After a general introduction to the topic and a brief review of the lower energy cosmic rays and the d etection methods, the two most recent experiments, the High Resolution Flys Eye (HiRes) and the Southern Auger Observatory are described. We then concentrate on the results from these two experiments on the cosmic ray energy spectrum, the chemical composition of these cosmic rays and on the searches for their sources. We conclude with a brief analysis of the controversies in these results and the projects in development and construction that can help solve the remaining problems with these particles.
Data of Pierre Auger Observatory show a proton-dominated chemical composition of ultrahigh-energy cosmic rays spectrum at (1 - 3) EeV and a steadily heavier composition with energy increasing. In order to explain this feature we assume that (1 - 3) E eV protons are extragalactic and derive their maximum acceleration energy, E_p^{max} simeq 4 EeV, compatible with both the spectrum and the composition. We also assume the rigidity-dependent acceleration mechanism of heavier nuclei, E_A^{max} = Z x E_p^{max}. The proposed model has rather disappointing consequences: i) no pion photo-production on CMB photons in extragalactic space and hence ii) no high-energy cosmogenic neutrino fluxes; iii) no GZK-cutoff in the spectrum; iv) no correlation with nearby sources due to nuclei deflection in the galactic magnetic fields up to highest energies.
We study general implications of the IceCube observations in the energy range from $10^{6}$ GeV to $10^{10}$ GeV for the origin of extragalactic ultrahigh energy cosmic rays assuming that high energy neutrinos are generated by the photomeson producti on of protons in the extragalactic universe. The PeV-energy neutrino flux observed by IceCube gives strong bounds on the photomeson-production optical depth of protons in their sources and the intensity of the proton component of extragalactic cosmic rays. The neutrino flux implies that extragalactic cosmic-ray sources should have the optical depth greater than $sim 0.01$ and contribute to more than a few percent of the observed bulk of cosmic rays at 10 PeV. If the spectrum of cosmic rays from these extragalactic sources extends well beyond 1 EeV, the neutrino flux indicates that extragalactic cosmic rays are dominant in the observed total cosmic-ray flux at 1 EeV and above, favoring the dip transition model of cosmic rays. The cosmic-ray sources are also required to be efficient neutrino emitters with the optical depth close to unity in this case. The highest energy cosmic-ray ($sim 10^{11}$ GeV) sources should not be strongly evolved with redshift to account for the IceCube observations, suggesting that any cosmic-ray radiation scenarios involving distant powerful astronomical objects with strong cosmological evolution are strongly disfavored. These considerations conclude that none of the known extragalactic astronomical objects can be simultaneously a source of both PeV and trans-EeV energy cosmic rays. We also discuss a possible effect of cosmic-ray propagation in magnetized intergalactic space to the connection between the observed total cosmic-ray flux and neutrino flux.
We explore the joint implications of ultrahigh energy cosmic ray (UHECR) source environments -- constrained by the spectrum and composition of UHECRs -- and the observed high energy astrophysical neutrino spectrum. Acceleration mechanisms producing p ower-law CR spectra $propto E^{-2}$ are compatible with UHECR data, if CRs at high rigidities are in the quasi-ballistic diffusion regime as they escape their source environment. Both gas- and photon-dominated source environments are able to account for UHECR observations, however photon-dominated sources do so with a higher degree of accuracy. However, gas-dominated sources are in tension with current neutrino constraints. Accurate measurement of the neutrino flux at $sim 10$ PeV will provide crucial information on the viability of gas-dominated sources, as well as whether diffusive shock acceleration is consistent with UHECR observations. We also show that UHECR sources are able to give a good fit to the high energy portion of the astrophysical neutrino spectrum, above $sim$ PeV. This common origin of UHECRs and high energy astrophysical neutrinos is natural if air shower data is interpreted with the textsc{Sibyll2.3c} hadronic interaction model, which gives the best-fit to UHECRs and astrophysical neutrinos in the same part of parameter space, but not for EPOS-LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا