ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of Photocatalytic Dissociation of Water on TiO2 with Atomic Resolution

206   0   0.0 ( 0 )
 نشر من قبل Bing Wang
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photocatalytic water splitting reaction on TiO2 surface is one of the fundamental issues that bears significant implication in hydrogen energy technology and has been extensively studied. However, the existence of the very first reaction step, the direct photo-dissociation of water, has been disregarded. Here, we provide unambiguously experimental evidence to demonstrate that adsorbed water molecules on reduced rutile TiO2(110)-1times1 surface can be dissociated under UV irradiation using low temperature scanning tunneling microscopy. It is identified that a water molecule at fivefold coordinated Ti (Ti5c) site can be photocatalytically dissociated, resulting in a hydroxyl at Ti5c and another hydroxyl at bridge oxygen row. Our findings reveal a missing link in the photocatalytic water splitting reaction chain, which greatly contribute to the detailed understanding of underlying mechanism.

قيم البحث

اقرأ أيضاً

110 - Shijing Tan , Yan Zhao , Jin Zhao 2011
Converting CO$_2$ to useful compounds through the solar photocatalytic reduction has been one of the most promising strategies for artificial carbon recycling. The highly relevant photocatalytic substrate for CO$_2$ conversion has been the popular Ti O$_2$ surfaces. However, the lack of accurate fundamental parameters that determine the CO$_2$ reduction on TiO$_2$ has limited our ability to control these complicated photocatalysis processes. We have systematically studied the reduction of CO2 at specific sites of the rutile TiO$_2$(110)-1x1 surface using scanning tunneling microscopy at 80 K. The dissociation of CO2 molecules is found to be activated by one electron attachment process and its energy threshold, corresponding to the CO$_2^{dot-}$/CO$_2$ redox potential, is unambiguously determined to be 2.3 eV higher than the onset of the TiO$_2$ conduction band. The dissociation rate as a function of electron injection energy is also provided. Such information can be used as practical guidelines for the design of effective catalysts for CO$_2$ photoreduction.
The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-cry stal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.
In this work, second-generation Car-Parrinello-based QM/MM molecular dynamics simulations of small nanoparticles of NbP, NbAs, TaAs and 1T-TaS$_2$ in water are presented. The first three materials are topological Weyl semimetals, which were recently discovered to be active catalysts in photocatalytic water splitting. The aim of this research was to correlate potential differences in the water structure in the vicinity of the nanoparticle surface with the photocatalytic activity of these materials in light induced proton reduction. The results presented herein allow to explain the catalytic activity of these Weyl semimetals: the most active material, NbP, exhibits a particularly low water coordination near the surface of the nanoparticle, whereas for 1T-TaS$_2$, with the lowest catalytic activity, the water structure at the surface is most ordered. In addition, the photocatalytic activity of several organic and metalorganic photosensitizers in the hydrogen evolution reaction was experimentally investigated with NbP as proton reduction catalyst. Unexpectedly, the charge of the photosensitizer plays a decisive role for the photocatalytic performance.
Gold-decorated TiO$_2$ nanotubes were used for the photocatalytic abatement of Hg(II) in aqueous solutions. The presence of dewetted Au nanoparticles induces a strong enhancement of photocatalytic reduction and scavenging performances, with respect t o naked TiO$_2$. In the presence of chlorides, a massive formation of Hg2Cl2 nanowires, produced from Au nanoparticles, was observed using highly Au loaded photocatalysts to treat a 10 ppm Hg(II) solution. EDS and XPS confirmed the nature of the photo-produced nanowires. In the absence of chlorides and/or at lower Hg(II) starting concentrations, the scavenging of mercury proceeds through the formation of Hg-Au amalgams. Solar light driven Hg(II) abatements up to 90% were observed after 24h. ICP-MS analysis revealed that the removed Hg(II) is accumulated on the photocatalyst surface. Regeneration of Hg-loaded exhaust photocatalysts was easily performed by anodic stripping of Hg(0) and Hg(I) to Hg(II). After four catalytic-regeneration cycles only a 10% decrease of activity was observed.
In this work, we demonstrate that a well-established and facile ball milling approach using mixtures of commercial anatase nanoparticles and TiH2 introduces noble-metal-free photocatalytic H2 activity to titania. We characterize this synergistic effe ct in view of the nature of defects, state of hydroxylation, and investigate the effect on the energetics and kinetics of electronic states and the resulting H2 evolution performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا