ﻻ يوجد ملخص باللغة العربية
Double-barred galaxies are common in the local Universe, with approximately one third of barred spirals hosting an smaller, inner bar. Nested bars have been proposed as a mechanism for transporting gas to the very central regions of the galaxy, trigger star formation and contribute to the growth of the bulge. To test this idea, we perform for the first time a detailed analysis of the photometry, kinematics and stellar populations of a double-barred galaxy: NGC 357. We find that this galaxy is either hosting a pseudobulge or a classical bulge together with an inner disc. We compare the relative mean luminosity-weighted age, metallicity and alpha-enhancement between the (pseudo)bulge, inner bar and outer bar, finding that the three structures are nearly coeval and old. Moreover, the bulge and inner bar present the same metallicity and overabundance, whereas the outer bar tends to be less metal-rich and more alpha-enhanced. These results point out that, rather than the classical secular scenario in which gas and star formation play a major role, the redistribution of the existing stars is driving the formation of the inner structures.
We present new deep imaging of the central regions of the remote globular cluster NGC 2419, obtained with the F343N and F336W filters of HST/WFC3. The new data are combined with archival imaging to constrain nitrogen and helium abundance variations w
Inner bars are frequent structures in the local Universe and thought to substantially influence the nuclear regions of disc galaxies. In this study we explore the structure and dynamics of inner bars by deriving maps and radial profiles of their mean
Cluster formation and gas dynamics in the central regions of barred galaxies are not well understood. This paper reviews the environment of three 10^7 Msun clusters near the inner Lindblad resonance of the barred spiral NGC 1365. The morphology, mass
We present the results of integral-field spectroscopic observations of the two disk galaxies NGC 3593 and NGC 4550 obtained with VIMOS/VLT. Both galaxies are known to host 2 counter-rotating stellar disks, with the ionized gas co-rotating with one of
Despite numerous efforts, it is still unclear whether lenticular galaxies (S0s) evolve from spirals whose star formation was suppressed, or formed trough mergers or disk instabilities. In this paper we present a pilot study of 21 S0 galaxies in extre