ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on neutron-star theories from nearby neutron star observations

70   0   0.0 ( 0 )
 نشر من قبل Markus Matthias Hohle
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We try to constrain the nuclear Equation-of-State (EoS) and supernova ejecta models by observations of young neutron stars in our galactic neighbourhood. There are seven thermally emitting isolated neutron stars known from X-ray and optical observations, the so-called Magnificent Seven, which are young (few Myrs), nearby (few hundred pc), and radio-quiet with blackbody-like X-ray spectra, so that - by observing their surface - we can determine their luminosity, distance, and temperature, hence, their radius. We also see the possibility to determine their current neutron star masses and the masses of their progenitor stars by studying their origin. It is even feasible to find the neutron star which was born in the supernova, from which those Fe60 atoms were ejected, which were recently found in the Earth crust.

قيم البحث

اقرأ أيضاً

We try to constrain the Equation-of-State (EoS) of supra-nuclear-density matter in neutron stars (NSs) by observations of nearby NSs. There are seven thermally emitting NSs known from X-ray and optical observations, the so-called Magnificent Seven (M 7), which are young (up to few Myrs), nearby (within a few hundred pc), and radio-quiet with blackbody-like X-ray spectra, so that we can observe their surfaces. As bright X-ray sources, we can determine their rotational (pulse) period and their period derivative from X-ray timing. From XMM and/or Chandra X-ray spectra, we can determine their temperature. With precise astrometric observations using the Hubble Space Telescope, we can determine their parallax (i.e. distance) and optical flux. From flux, distance, and temperature, one can derive the emitting area - with assumptions about the atmosphere and/or temperature distribution on the surface. This was recently done by us for the two brightest M7 NSs RXJ1856 and RXJ0720. Then, from identifying absorption lines in X-ray spectra, one can also try to determine gravitational redshift. Also, from rotational phase-resolved spectroscopy, we have for the first time determined the compactness (mass/radius) of the M7 NS RBS1223. If also applied to RXJ1856, radius (from luminosity and temperature) and compactness (from X-ray data) will yield the mass and radius - for the first time for an isolated single neutron star. We will present our observations and recent results.
The modeling of many neutron star observables incorporates the microphysics of both the stellar crust and core, which is tied intimately to the properties of the nuclear matter equation of state (EoS). We explore the predictions of such models over t he range of experimentally constrained nuclear matter parameters, focusing on the slope of the symmetry energy at nuclear saturation density $L$. We use a consistent model of the composition and EoS of neutron star crust and core matter to model the binding energy of pulsar B of the double pulsar system J0737-3039, the frequencies of torsional oscillations of the neutron star crust and the instability region for r-modes in the neutron star core damped by electron-electron viscosity at the crust-core interface. By confronting these models with observations, we illustrate the potential of astrophysical observables to offer constraints on poorly known nuclear matter parameters complementary to terrestrial experiments, and demonstrate that our models consistently predict $L<70$ MeV.
182 - Chang Liu , Lijing Shao 2021
The detections of gravitational waves (GWs) from binary neutron star (BNS) systems and neutron star--black hole (NSBH) systems provide new insights into dense matter properties in extreme conditions and associated high-energy astrophysical processes. However, currently information about NS equation of state (EoS) is extracted with very limited precision. Meanwhile, the fruitful results from the serendipitous discovery of the $gamma$-ray burst alongside GW170817 show the necessity of early warning alerts. Accurate measurements of the matter effects and sky location could be achieved by joint GW detection from space and ground. In our work, based on two example cases, GW170817 and GW200105, we use the Fisher information matrix analysis to investigate the multiband synergy between the space-borne decihertz GW detectors and the ground-based Einstein Telescope (ET). We specially focus on the parameters pertaining to spin-induced quadrupole moment, tidal deformability, and sky localization. We demonstrate that, (i) only with the help of multiband observations can we constrain the quadrupole parameter; and (ii) with the inclusion of decihertz GW detectors, the errors of tidal deformability would be a few times smaller, indicating that many more EoSs could be excluded; (iii) with the inclusion of ET, the sky localization improves by about an order of magnitude. Furthermore, we have systematically compared the different limits from four planned decihertz detectors and adopting two widely used waveform models.
We demonstrate that observations of glitches in the Vela pulsar can be used to investigate the strength of the crust-core coupling in a neutron star, and suggest that recovery from the glitch is dominated by torque exerted by the re-coupling of super fluid components of the core that were decoupled from the crust during the glitch. Assuming that the recoupling is mediated by mutual friction between the superfluid neutrons and the charged components of the core, we use the observed magnitudes and timescales of the shortest timescale components of the recoveries from two recent glitches in the Vela pulsar to infer the fraction of the core that is coupled to the crust during the glitch, and hence spun up by the glitch event. Within the framework of a two-fluid hydrodynamic model of glitches, we analyze whether crustal neutrons alone are sufficient to drive the glitch activity observed in the Vela pulsar. We use two sets of neutron star equations of state (EOSs), both of which span crust and core consistently and cover a range of the slope of the symmetry energy at saturation density $30 < L <120$ MeV. One set produces maximum masses $approx$2.0$M_{odot}$, the second $approx$2.6$M_{odot}$. We also include the effects of entrainment of crustal neutrons by the superfluid lattice. We find that for medium to stiff EOSs, observations imply $>70%$ of the moment of inertia of the core is coupled to the crust during the glitch, though for softer EOSs $Lapprox 30$MeV as little as $5%$ could be coupled. No EOS is able to reproduce the observed glitch activity with crust neutrons alone, but extending the region where superfluid vortices are strongly pinned into the core by densities as little as 0.016fm$^{-3}$ above the crust-core transition density restores agreement with the observed glitch activity.
109 - Carolyn A. Raithel 2019
The first detection of gravitational waves from a neutron star-neutron star merger, GW170817, has opened up a new avenue for constraining the ultradense-matter equation of state (EOS). The deviation of the observed waveform from a point-particle wave form is a sensitive probe of the EOS controlling the merging neutron stars structure. In this topical review, I discuss the various constraints that have been made on the EOS in the year following the discovery of GW170817. In particular, I review the surprising relationship that has emerged between the effective tidal deformability of the binary system and the neutron star radius. I also report new results that make use of this relationship, finding that the radius inferred from GW170817 lies between 9.8 and 13.2 km at 90% confidence, with distinct likelihood peaks at 10.8 and 12.3 km. I compare these radii, as well as those inferred in the literature, to X-ray measurements of the neutron star radius. I also summarize the various maximum mass constraints, which point towards a maximum mass < 2.3 M_sun, depending on the fate of the remnant, and which can be used to additionally constrain the high-density EOS. I review the constraints on the EOS that have been performed directly, through Bayesian inference schemes. Finally, I comment on the importance of disentangling thermal effects in future EOS constraints from neutron star mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا