ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalizations of the PRV conjecture, II

70   0   0.0 ( 0 )
 نشر من قبل Boris Pasquier
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Gsubsethat{G}$ be two complex connected reductive groups. We deals with the hard problem of finding sub-$G$-modules of a given irreducible $hat{G}$-module. In the case where $G$ is diagonally embedded in $hat{G}=Gtimes G$, S. Kumar and O. Mathieu found some of them, proving the PRV conjecture. Recently, the authors generalized the PRV conjecture on the one hand to the case where $hat{G}/G$ is spherical of minimal rank, and on the other hand giving more sub-$G$-modules in the classical case $Gsubset Gtimes G$. In this paper, these two recent generalizations are combined in a same more general result.

قيم البحث

اقرأ أيضاً

Let H be any reductive p-adic group. We introduce a notion of cuspidality for enhanced Langlands parameters for H, which conjecturally puts supercuspidal H-representations in bijection with such L-parameters. We also define a cuspidal support map and Bernstein components for enhanced L-parameters, in analogy with Bernsteins theory of representations of p-adic groups. We check that for several well-known reductive groups these analogies are actually precise. Furthermore we reveal a new structure in the space of enhanced L-parameters for H, that of a disjoint union of twisted extended quotients. This is an analogue of the ABPS conjecture (about irreducible H-representations) on the Galois side of the local Langlands correspondence. Only, on the Galois side it is no longer conjectural. These results will be useful to reduce the problem of finding a local Langlands correspondence for H-representations to the corresponding problem for supercuspidal representations of Levi subgroups of H. The main machinery behind this comes from perverse sheaves on algebraic groups. We extend Lusztigs generalized Springer correspondence to disconnected complex reductive groups G. It provides a bijection between, on the one hand, pairs consisting of a unipotent element u in G and an irreducible representation of the component group of the centralizer of u in G, and, on the other hand, irreducible representations of a set of twisted group algebras of certain finite groups. Each of these twisted group algebras contains the group algebra of a Weyl group, which comes from the neutral component of G.
227 - Tamas Hausel 2010
We prove a generating function formula for the Betti numbers of Nakajima quiver varieties. We prove that it is a q-deformation of the Weyl-Kac character formula. In particular this implies that the constant term of the polynomial counting the number of absolutely indecomposable representations of a quiver equals the multiplicity of a a certain weight in the corresponding Kac-Moody algebra, which was conjectured by Kac in 1982.
We prove the Noether-Lefschetz conjecture on the moduli space of quasi-polarized K3 surfaces. This is deduced as a particular case of a general theorem that states that low degree cohomology classes of arithmetic manifolds of orthogonal type are dual to the classes of special cycles, i.e. sub-arithmetic manifolds of the same type. For compact manifolds this was proved in cite{BMM11}, here we extend the results of cite{BMM11} to non-compact manifolds. This allows us to apply our results to the moduli spaces of quasi-polarized K3 surfaces.
We study connections between the topology of generic character varieties of fundamental groups of punctured Riemann surfaces, Macdonald polynomials, quiver representations, Hilbert schemes on surfaces, modular forms and multiplicities in tensor produ cts of irreducible characters of finite general linear groups.
We present a proof of the compositional shuffle conjecture, which generalizes the famous shuffle conjecture for the character of the diagonal coinvariant algebra. We first formulate the combinatorial side of the conjecture in terms of certain operato rs on a graded vector space $V_*$ whose degree zero part is the ring of symmetric functions $Sym[X]$ over $mathbb{Q}(q,t)$. We then extend these operators to an action of an algebra $tilde{AA}$ acting on this space, and interpret the right generalization of the $ abla$ using an involution of the algebra which is antilinear with respect to the conjugation $(q,t)mapsto (q^{-1},t^{-1})$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا