ترغب بنشر مسار تعليمي؟ اضغط هنا

Discontinuous Transition from a Real Bound State to Virtual Bound State in a Mixed-Valence State of SmS

308   0   0.0 ( 0 )
 نشر من قبل Keiichiro Imura
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Golden SmS is a paramagnetic, mixed-valence system with a pseudogap. With increasing pressure across a critical pressure Pc, the system undergoes a discontinuous transition into a metallic, anti-ferromagnetically ordered state. By using a combination of thermodynamic, transport, and magnetic measurements, we show that the pseudogap results from the formation of a local bound state with spin singlet. We further argue that the transition Pc is regarded as a transition from an insulating electron-hole gas to a Kondo metal, i.e., from a spatially bound state to a Kondo virtually bound state between 4f and conduction electrons.



قيم البحث

اقرأ أيضاً

We study a quantum dot coupled to two semiconducting reservoirs, when the dot level and the electrochemical potential are both close to a band edge in the reservoirs. This is modelled with an exactly solvable Hamiltonian without interactions (the Fan o-Anderson model). The model is known to show an abrupt transition as the dot-reservoir coupling is increased into the strong-coupling regime for a broad class of band structures. This transition involves an infinite-lifetime bound state appearing in the band gap. We find a signature of this transition in the continuum states of the model, visible as a discontinuous behaviour of the dots transmission function. This can result in the steady-state DC electric and thermoelectric responses having a very strong dependence on coupling close to critical coupling. We give examples where the conductances and the thermoelectric power factor exhibit huge peaks at critical coupling, while the thermoelectric figure of merit ZT grows as the coupling approaches critical coupling, with a small dip at critical coupling. The critical coupling is thus a sweet spot for such thermoelectric devices, as the power output is maximal at this point without a significant change of efficiency.
We show that a hole and a triplet spin form a bound state in a nearly half-filled band of the one- and two-dimensional $t_1$-$t_2$-$J_1$-$J_2$ models. Numerical calculation indicates that the bound state is a spatially small object and moves as a com posite particle with spin 1 and charge $+e$ in the spin-gapped background. Two bound states repulsively interact with each other in a short distance and move independently as long as they keep their distance. If a finite density of bound states behave as bosons, the system undergoes the Bose-Einstein condensation which means a superconductivity with charge $+e$.
114 - W. B. Jiang , L. Yang , C. Y. Guo 2015
We report measurements of the physical properties and electronic structure of the hexagonal compounds Yb2Ni12Pn7 (Pn = P, As) by measuring the electrical resistivity, magnetization, specific heat and partial fluorescence yield x-ray absorption spectr oscopy (PFY-XAS). These demonstrate a crossover upon reducing the unit cell volume, from an intermediate valence state in Yb2Ni12As7 to a heavy-fermion paramagnetic state in Yb2Ni12P7, where the Yb is nearly trivalent. Application of pressure to Yb2Ni12P7 suppresses T_FL, the temperature below which Fermi liquid behavior is recovered, suggesting the presence of a quantum critical point (QCP) under pressure. However, while there is little change in the Yb valence of Yb2Ni12P7 up to 30 GPa, there is a strong increase for Yb2Ni12As7 under pressure, before a near constant value is reached. These results indicate that any magnetic QCP in this system is well separated from strong valence fluctuations. The pressure dependence of the valence and lattice parameters of Yb2Ni12As7 are compared and at 1 GPa, there is an anomaly in the unit cell volume as well as a change in the slope of the Yb valence, indicating a correlation between structural and electronic changes.
The transition to a hidden metastable state in 1T-TaS2 is investigated in real time using coherent time-resolved femtosecond spectroscopy. Relying on spectral differences between phonon modes in the equilibrium states and in the metastable state, and temperature-tuning the metastable state lifetime, we perform stroboscopic measurements of the electronic response and switching of coherent oscillation frequency through the transition. Very fast coherent switching of the collective mode frequency is observed (400 fs), comparable to the electronic timescale (300 fs). A slower, 4.7 ps process is attributed to lattice relaxation. The observations are described well by a fast electronic band structure transformation into the metastable state, consistent with a topological transition.
Recent progress toward the fabrication of Majorana-based qubits has sparked the need for systematic approaches to optimize experimentally relevant parameters for the realization of robust Majorana bound states. Here, we introduce an efficient numeric al method for the real-space optimization of tunable parameters, such as electrostatic potential profiles and magnetic field textures, in Majorana wires. Combining ideas from quantum control and quantum transport, our algorithm, applicable to any noninteracting tight-binding model, operates on a largely unexplored parameter space and opens new routes for Majorana bound states with enhanced robustness. Contrary to common belief, we find that spatial inhomogeneities of parameters can be a resource for the engineering of Majorana bound states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا