ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy and Xmax reconstruction of hadron-initiated showers in surface arrays

195   0   0.0 ( 0 )
 نشر من قبل German Ros Dr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The current methods to determine the primary energy in surface arrays are different when dealing with hadron or photon initiated showers. In this work, we adapt a method previously developed for photon-initiated showers to hadron primaries. We determine the Monte Carlo parametrizations that relate the surface energy estimator and the maximum of shower development for both, proton and Iron primaries. Using for each primary their own set of calibration curves, which is of course impossible in practice, we show that the energy could be inferred with a negligible bias and 12% resolution. However, we show that a mixed calibration could also be performed, including both type of primaries, such that the bias still remains low and the achieved resolution is around 15%. In addition, the method allows the simultaneous determination of Xmax in pure surface arrays with resolution better than 7%.



قيم البحث

اقرأ أيضاً

The current methods to determine the primary energy of ultra-high energy cosmic rays (UHECRs) are different when dealing with hadron or photon primaries. The current experiments combine two different techniques, an array of surface detectors and fluo rescence telescopes. The latter allow an almost calorimetric measurement of the primary energy. Thus, hadron-initiated showers detected by both type of detectors are used to calibrate the energy estimator from the surface array (usually the interpolated signal at a certain distance from the shower core S(r0)) with the primary energy. On the other hand, this calibration is not feasible when searching for photon primaries since no high energy photon has been unambiguously detected so far. Therefore, pure Monte Carlo parametrizations are used instead. In this work, we present a new method to determine the primary energy of hadron-induced showers in a hybrid experiment based on a technique previously developed for photon primaries. It consists on a set of calibration curves that relate the surface energy estimator, S(r0), and the depth of maximum development of the shower, Xmax, obtained from the fluorescence telescopes. Then, the primary energy can be determined from pure surface information since S(r0) and the zenith angle of the incoming shower are only needed. Considering a mixed sample of ultra-high energy proton and iron primaries and taking into account the reconstruction uncertainties and shower to shower fluctuations, we demonstrate that the primary energy may be determined with a systematic uncertainty below 1% and resolution around 16% in the energy range from 10^{18.5} to 10^{19.6} eV. Several array geometries, the shape of the energy error distributions and the uncertainties due to the unknown composition of the primary flux have been analyzed as well.
The LOPES experiment, a digital radio interferometer located at KIT (Karlsruhe Institute of Technology), obtained remarkable results for the detection of radio emission from extensive air showers at MHz frequencies. Features of the radio lateral dist ribution function (LDF) measured by LOPES are explored in this work for a precise reconstruction of two fundamental air shower parameters: the primary energy and the shower Xmax. The method presented here has been developed on (REAS3-)simulations, and is applied to LOPES measurements. Despite the high human-made noise at the LOPES site, it is possible to reconstruct both the energy and Xmax for individual events. On the one hand, the energy resolution is promising and comparable to the one of the co-located KASCADE-Grande experiment. On the other hand, Xmax values are reconstructed with the LOPES measurements with a resolution of 90 g/cm2 . A precision on Xmax better than 30 g/cm2 is predicted and achievable in a region with a lower human-made noise level.
In hadronic collisions at high energies, the top-quark may be treated as a parton inside a hadron. Top-quark initiated processes become increasingly important since the top-quark luminosity can reach a few percent of the bottom-quark luminosity. In t he production of a heavy particle $H$ with mass $m_H > m_t$, treating the top-quark as a parton allows us to resum large logarithms $log(m_{H}^{2}/m_{t}^{2}$) arising from collinear splitting in the initial state. We quantify the effect of collinear resummation at the 14-TeV LHC and a future 100-TeV hadron collider, focusing on the top-quark open-flavor process $ggto tbar t H$ in comparison with $tbar t to H$ and $tgrightarrow tH$ at the leading order (LO) in QCD. We employ top-quark parton distribution functions with appropriate collinear subtraction and power counting. We find that (1) Collinear resummation enhances the inclusive production of a heavy particle with $m_Happrox$ 5 TeV (0.5 TeV) by more than a factor of two compared to the open-flavor process at a 100-TeV (14-TeV) collider; (2) Top-quark mass effects are important for scales $m_H$ near the top-quark threshold, where the cross section is largest. We advocate a modification of the ACOT factorization scheme, dubbed m-ACOT, to consistently treat heavy-quark masses in hadronic collisions; (3) The scale uncertainty of the total cross section in m-ACOT is of about 20 percent at the LO. While a higher-order calculation is indispensable for a precise prediction, the LO cross section is well described by the process $tbar tto H$ using an effective factorization scale significantly lower than $m_H$. We illustrate our results by the example of a heavy spin-0 particle. Our main results also apply to the production of particles with spin-1 and 2.
A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of $6^circ$ for shower energies below 100 TeV. Applying this algorithm to 6 years o f data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2 - 4 additional events are expected. A 90% C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of $E^2cdot Phi^{90%} = 4.9 cdot 10^{-8}$ GeV $cdot$ cm$^{-2} cdot$ s$^{-1} cdot$ sr$^{-1}$ is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken $E^{-2}$ spectrum and neutrino flavour equipartition at Earth.
Ultra-high energy cosmic rays (UHECRs) interacting with the atmosphere generate extensive air showers (EAS) of secondary particles. The depth corresponding to the maximum development of the shower, $Xmax$, is a well-known observable for determining t he nature of the primary cosmic ray which initiated the cascade process. In this paper, we present an empirical model to describe the distribution of $Xmax$ for EAS initiated by nuclei, in the energy range from $10^{17}$ eV up to $10^{21}$ eV, and by photons, in the energy range from $10^{17}$ eV up to $10^{19.6}$ eV. Our model adopts the generalized Gumbel distribution motivated by the relationship between the generalized Gumbel statistics and the distribution of the sum of non-identically distributed variables in dissipative stochastic systems. We provide an analytical expression for describing the $Xmax$ distribution for photons and for nuclei, and for their first two statistical moments, namely $langle Xmaxrangle$ and $sigma^{2}(Xmax)$. The impact of the hadronic interaction model is investigated in detail, even in the case of the most up-to-date models accounting for LHC observations. We also briefly discuss the differences with a more classical approach and an application to the experimental data based on information theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا