ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of photospheric emission from relativistic outflows

37   0   0.0 ( 0 )
 نشر من قبل Gregory V. Vereshchagin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we reexamine the optical depth of ultrarelativistic spherically symmetric outflows and reevaluate the photospheric radius for each model during both the acceleration and coasting phases. It is shown that for both the wind and the shell models there are two asymptotic solutions for the optical depth during the coasting phase of the outflow. In particular we show that quite counterintuitively a geometrically thin shell may appear as a thick wind for photons propagating inside it. For this reason we introduce notions of photon thick and photon thin outflows, which appear more general and better physically motivated with respect to winds and shells. Photosphere of relativistic outflow is a dynamic surface. We study its geometry and find that the photosphere of photon thin outflow has always a convex shape, while in the photon thick one it is initially convex (there is always a photon thin layer in any outflow) and then it becomes concave asymptotically approaching the photosphere of an infinitely long wind. We find that both instantaneous and time integrated observed spectra are very close to the thermal one for photon thick outflows, in line with existing studies. It is our main finding that the photospheric emission from the photon thin outflow produces non thermal time integrated spectra, which may be described by the Band function well known in the GRB literature. We find that energetic GRBs should produce photon thin outflows with photospheric emission lasting less than one second for the total energy $E_0leq10^{54}$ erg and baryonic loading parameter $Bleq10^{-2}$. It means that only time integrated spectra may be observed from such GRBs.

قيم البحث

اقرأ أيضاً

135 - Kate H. R. Rubin 2010
We study the kinematically narrow, low-ionization line emission from a bright, starburst galaxy at z = 0.69 using slit spectroscopy obtained with Keck/LRIS. The spectrum reveals strong absorption in MgII and FeII resonance transitions with Doppler sh ifts of -200 to -300 km/s, indicating a cool gas outflow. Emission in MgII near and redward of systemic velocity, in concert with the observed absorption, yields a P Cygni-like line profile similar to those observed in the Ly alpha transition in Lyman Break Galaxies. Further, the MgII emission is spatially resolved, and extends significantly beyond the emission from stars and HII regions within the galaxy. Assuming the emission has a simple, symmetric surface brightness profile, we find that the gas extends to distances > ~7 kpc. We also detect several narrow FeII* fine-structure lines in emission near the systemic velocity, arising from energy levels which are radiatively excited directly from the ground state. We suggest that the MgII and FeII* emission is generated by photon scattering in the observed outflow, and emphasize that this emission is a generic prediction of outflows. These observations provide the first direct constraints on the minimum spatial extent and morphology of the wind from a distant galaxy. Estimates of these parameters are crucial for understanding the impact of outflows in driving galaxy evolution.
In order to better understand the physical origin of short duration gamma-ray bursts (GRBs), we perform time-resolved spectral analysis on a sample of 70 pulses in 68 short GRBs with burst duration $T_{90}lesssim2$ s detected by the textit{Fermi}/GBM . We apply a Bayesian analysis to all spectra that have statistical significance $Sge15$ within each pulse and apply a cut-off power law (CPL) model. We then select in each pulse the timebin that has the maximal value of the low energy spectral index, %$alpha_{rm max}$, for further analysis. Under the assumption that the main emission mechanism is the same throughout each pulse, such an analysis is indicative of pulse emission. We find that $sim$1/3 of short GRBs are consistent with a pure, non-dissipative photospheric model, at least, around the peak of the pulse. This fraction is larger compare to the corresponding one (1/4) obtained for long GRBs. For these bursts, we find (i) a bi-modal distribution in the values of the Lorentz factors and the hardness ratios; (ii) an anti-correlation between $T_{90}$ and the peak energy, $E_{rm pk}$: $T_{90} propto E_{rm pk}^{-0.50pm0.19}$. This correlation disappears when we consider the entire sample. Our results thus imply that the short GRB population may in fact be composed of two separate populations: one being a continuation of the long GRB population to shorter durations, and the other one being distinctly separate with different physical properties. Furthermore, thermal emission is initially ubiquitous, but is accompanied at longer times by additional radiation (likely synchrotron).
Relativistic magnetized shocks are a natural source of coherent emission, offering a plausible radiative mechanism for Fast Radio Bursts (FRBs). We present first-principles 3D simulations that provide essential information for the FRB models based on shocks: the emission efficiency, spectrum, and polarization. The simulated shock propagates in an $e^pm$ plasma with magnetization $sigma>1$. The measured fraction of shock energy converted to coherent radiation is $simeq 10^{-3} , sigma^{-1}$, and the energy-carrying wavenumber of the wave spectrum is $simeq 4 ,omega_{rm c}/c$, where $omega_{rm c}$ is the upstream gyrofrequency. The ratio of the O-mode and X-mode energy fluxes emitted by the shock is $simeq 0.4,sigma^{-1}$. The dominance of the X-mode at $sigmagg 1$ is particularly strong, approaching 100% in the spectral band around $2,omega_{rm c}$. We also provide a detailed description of the emission mechanism for both X- and O-modes.
128 - Kai Wang , Da-Bin Lin , Yun Wang 2020
It is generally believed that the variability of photospheric emission in gamma-ray bursts (GRBs) traces that of the jet power. This work further investigates the variability of photospheric emission in a variable jet. By setting a constant $eta$ (di mensionless entropy of the jet), we find that the light curve of the photospheric emission shows a ``tracking pattern on the time profile of jet power. However, the relative variability is significantly low in the photospheric emission compared with that in the jet power. If the $eta$ is genetic variable, the variability of the photospheric emission is not only limited by the jet power but also affected by $eta$ strongly. It becomes complex and is generally different from that of the jet power. Moreover, the opposite phase may stand in the variabilities of the photospheric emission at different photon energies. We also find that the relative variability does not remain constant over the photon energies with an obvious reduction at a certain energy. This is consistent with the analysis of GRB 090902B in which an appreciable thermal component has been detected in a wide energy range. For several other GRBs coupling with the thermal component, we conservatively evaluate the variability of the thermal and non-thermal emission, respectively. Our results show that the relative variability of the thermal emission is likely comparable to that of the non-thermal emission for these bursts. In addition, the analysis of GRB~120323A reveals that the variability of the photospheric emission may be of the opposite phase from that of the non-thermal emission.
We examine the detailed physics of the feedback mechanism by relativistic AGN jets interacting with a two-phase fractal interstellar medium in the kpc-scale core of galaxies using 29 3D grid-based hydrodynamical simulations. The feedback efficiency, as measured by the amount of cloud-dispersal generated by the jet-ISM interactions, is sensitive to the maximum size of clouds in the fractal cloud distribution but not to their volume filling factor. Feedback ceases to be efficient for Eddington ratios P_jet/L_edd<10^-4, although systems with large cloud complexes ~50 pc require jets of Eddington ratio in excess of 10^-2 to disperse the clouds appreciably. Based on measurements of the bubble expansion rates in our simulations we argue that sub-grid AGN prescriptions resulting in negative feedback in cosmological simulations without a multi-phase treatment of the ISM are good approximations if the volume filling factor of warm phase material is less than 0.1 and the cloud complexes are smaller than ~25 pc. We find that the acceleration of the dense embedded clouds is provided by the ram pressure of the high velocity flow through the porous channels of the warm phase, flow that has fully entrained the shocked hot-phase gas it has swept up, and is additionally mass-loaded by ablated cloud material. This mechanism transfers 10% to 40% of the jet energy to the cold and warm gas, accelerating it within 10 to 100 Myr to velocities that match those observed in a range of high and low redshift radio galaxies hosting powerful radio jets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا