We review the AKSZ construction as applied to the topological open membranes and Poisson sigma models. We describe a generalization to open topological p-branes and Nambu-Poisson sigma models.
It is well-known that the Fundamental Identity (FI) implies that Nambu brackets are decomposable, i.e., given by a determinantal formula. We find a weaker alternative to the FI that allows for non-decomposable Nambu brackets, but still yields a Darbo
ux-like Theorem via a Nambu-type generalization of Weinsteins splitting principle for Poisson manifolds.
In this note the AKSZ construction is applied to the BFV description of the reduced phase space of the Einstein-Hilbert and of the Palatini--Cartan theories in every space-time dimension greater than two. In the former case one obtains a BV theory fo
r the first-order formulation of Einstein--Hilbert theory, in the latter a BV theory for Palatini--Cartan theory with a partial implementation of the torsion-free condition already on the space of fields. All theories described here are
We study solutions to Nahms equations with continuous symmetries and, under certain (mild) hypotheses, we classify the corresponding Ansatze. Using our classification, we construct novel Nahm data, and prescribe methods for generating further solutio
ns. Finally, we use these results to construct new BPS monopoles with spherical symmetry.
We present an explicit matrix algebra regularization of the algebra of volume-preserving diffeomorphisms of the $n$-torus. That is, we approximate the corresponding classical Nambu brackets using $mathfrak{sl}(N^{lceiltfrac{n}{2}rceil},mathbb{C})$-ma
trices equipped with the finite bracket given by the completely anti-symmetrized matrix product, such that the classical brackets are retrieved in the $Nrightarrow infty$ limit. We then apply this approximation to the super $4$-brane in $9$ dimensions and give a regularized action in analogy with the matrix regularization of the supermembrane. This action exhibits a reduced gauge symmetry that we discuss from the viewpoint of $L_infty$-algebras in a slight generalization to the construction of Lie $2$-algebras from Bagger-Lambert $3$-algebras.
We consider a construction of observables by using methods of supersymmetric field theories. In particular, we give an extension of AKSZ-type observables using the Batalin-Vilkovisky structure of AKSZ theories to a formal global version with methods
of formal geometry. We will consider the case where the AKSZ theory is split which will give an explicit construction for formal vector fields on base and fiber within the formal global action. Moreover, we consider the example of formal global generalized Wilson surface observables whose expectation values are invariants of higher-dimensional knots by using $BF$ field theory. These constructions give rise to interesting global gauge conditions such as the differential Quantum Master Equation and further extensions.