ﻻ يوجد ملخص باللغة العربية
Based on spin-orbit coupling induced by q-plates, we present a feasible experimental proposal for preparing two-dimensional spatially inhomogeneous polarizations of light. We further investigate the quantum correlations between these inhomogeneous polarizations of photon pairs generated by spontaneous parametric down-conversion, which in essence describe the so-called hypoentanglement that is established between composite spin-orbit variables of photons. The violation of the Clauser-Horne-Shimony-Holt-Bell inequality is predicted with S=2sqrt2 to illustrate the entangled nature of the cylindrical symmetry of spatially inhomogeneous polarizations.
In this paper, we use Bell inequality and nonlocality to study the bipartite correlation in an exactly soluble two-dimensional mixed spin system. Bell inequality turns out to be a valuable detector for phase transitions in this model. It can detect n
We observe violation of a Bell inequality between the quantum states of two remote Yb ions separated by a distance of about one meter with the detection loophole closed. The heralded entanglement of two ions is established via interference and joint
Single photons emerging from q-plates (or Pancharatnam-Berry phase optical element) exhibit entanglement in the degrees of freedom of spin and orbital angular momentum. We put forward an experimental scheme for probing the spin-orbit correlations of
The original formula of Bell inequality (BI) in terms of two-spin singlet has to be modified for the entangled-state with parallel spin polarization. Based on classical statistics of the particle-number correlation, we prove in this paper an extended
A finite non-classical framework for physical theory is described which challenges the conclusion that the Bell Inequality has been shown to have been violated experimentally, even approximately. This framework postulates the universe as a determinis