ترغب بنشر مسار تعليمي؟ اضغط هنا

Finding Fossil Groups: Optical Identification and X-ray Confirmation

133   0   0.0 ( 0 )
 نشر من قبل Eric D. Miller
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of 12 new fossil groups of galaxies, systems dominated by a single giant elliptical galaxy and cluster-scale gravitational potential, but lacking the population of bright galaxies typically seen in galaxy clusters. These fossil groups (FGs), selected from the maxBCG optical cluster catalog, were detected in snapshot observations with the Chandra X-ray Observatory. We detail the highly successful selection method, with an 80% success rate in identifying 12 FGs from our target sample of 15 candidates. For 11 of the systems, we determine the X-ray luminosity, temperature, and hydrostatic mass, which do not deviate significantly from expectations for normal systems, spanning a range typical of rich groups and poor clusters of galaxies. A small number of detected FGs are morphologically irregular, possibly due to past mergers, interaction of the intra-group medium (IGM) with a central AGN, or superposition of multiple massive halos. Two-thirds of the X-ray-detected FGs exhibit X-ray emission associated with the central BCG, although we are unable to distinguish between AGN and extended thermal galaxy emission using the current data. This sample, a large increase in the number of known FGs, will be invaluable for future planned observations to determine FG temperature, gas density, metal abundance, and mass distributions, and to compare to normal (non-fossil) systems. Finally, the presence of a population of galaxy-poor systems may bias mass function determinations that measure richness from galaxy counts. When used to constrain power spectrum normalization and {Omega}_m, these biased mass functions may in turn bias these results.

قيم البحث

اقرأ أيضاً

We present Chandra snapshot observations of the first large X-ray sample of optically identified fossil groups. For 9 of 14 candidate groups, we are able to determine the X-ray luminosity and temperature, which span a range typical of large elliptica ls to rich groups of galaxies. We discuss these initial results in the context of group IGM and central galaxy ISM evolution, and we also describe plans for a deep X-ray follow-up program.
This study is part of the FOssil Groups Origin (FOGO) project which aims at carrying out a systematic and multiwavelength study of a large sample of fossil systems. Here we focus on the relation between the optical luminosity (Lopt) and X-ray luminos ity (Lx). Out of a sample of 28 candidate fossil systems, we consider a sample of 12 systems whose fossil classification has been confirmed by a companion study. They are compared with the complementary sample of 16 systems whose fossil nature is not confirmed and with a subsample of 102 galaxy systems from the RASS-SDSS galaxy cluster survey. Fossil and normal systems span the same redshift range 0<z<0.5 and have the same Lx distribution. For each fossil system, the Lx in the 0.1-2.4 keV band is computed using data from the ROSAT All Sky Survey. For each fossil and normal system we homogeneously compute Lopt in the r-band within the characteristic cluster radius, using data from the SDSS DR7. We sample the Lx-Lopt relation over two orders of magnitude in Lx. Our analysis shows that fossil systems are not statistically distinguishable from the normal systems both through the 2D KS test and the fit of the Lx-Lopt relation. The optical luminosity of the galaxy system does strongly correlate with the X-ray luminosity of the hot gas component, independently of whether the system is fossil or not. We conclude that our results are consistent with the classical merging scenario of the brightest galaxy formed via merger/cannibalism of other group galaxies, with conservation of the optical light. We find no evidence for a peculiar state of the hot intracluster medium.
We report on the X-ray and optical observations of galaxy groups selected from the 2dfGRS group catalog, to explore the possibility that galaxy groups hosting a giant elliptical galaxy and a large optical luminosity gap present between the two bright est group galaxies, can be associated with an extended X-ray emission, similar to that observed in fossil galaxy groups. The X-ray observations of 4 galaxy groups were carried out with Chandra telescope with 10-20 ksec exposure time. Combining the X-ray and the optical observations we find evidences for the presence of a diffuse extended X-ray emission beyond the optical size of the brightest group galaxy. Taking both the X-ray and the optical criteria, one of the groups is identified as a fossil group and one is ruled out because of the contamination in the earlier optical selection. For the two remaining systems, the X-ay luminosity threshold is close to the convention know for fossil groups. In all cases the X-ray luminosity is below the expected value from the X-ray selected fossils for a given optical luminosity of the group. A rough estimation for the comoving number density of fossil groups is obtained and found to be in broad agreement with the estimations from observations of X-ray selected fossils and predictions of cosmological simulations.
241 - Taotao Fang 2010
In a previous paper we reported a 3-sigma detection of an absorption line from the Warm-Hot Intergalactic Medium (WHIM) using the Chandra and XMM X-ray grating spectra of the blazar H2356-309, the sight-line of which intercepts the Sculptor Wall, a l arge-scale superstructure of galaxies at z ~ 0.03. To verify our initial detection, we obtained a deep (500 ks), follow-up exposure of H2356-309 as part of the Cycle-10 Chandra Large Project Program. From a joint analysis of the Cycle-10 and previous (Cycle-8) Chandra grating data we detect the redshifted OVII WHIM line at a significance level of 3.4-sigma, a substantial improvement over the 1.7-sigma level reported previously when using only the Cycle-8 data. The significance increases to 4.0-sigma when the existing XMM grating data are included in the analysis, thus confirming at higher significance the existence of the line at the redshift of the Sculptor Wall with an equivalent width of 28.5+/-10.5 mA (90% confidence). We obtain a 90% lower limit on the OVII column density of 0.8 10^16 cm^-2 and a 90% upper limit on the Doppler-b parameter of 460 km/s. Assuming the absorber is uniformly distributed throughout the ~ 15 Mpc portion of the blazars sight-line that intercepts the Sculptor Wall, that the OVII column density is ~ 2 10^16 cm^-2 (corresponding to b > 150 km/s where the inferred column density is only weakly dependent on b), and that the oxygen abundance is 0.1 solar, we estimate a baryon over-density of ~ 30 for the WHIM, which is consistent with the peak of the WHIM mass fraction predicted by cosmological simulations. The clear detection of OVII absorption in the Sculptor Wall demonstrates the viability of using current observatories to study WHIM in the X-ray absorption spectra of blazars behind known large-scale structures.
We review the formation and evolution of fossil groups and clusters from both the theoretical and the observational points of view. In the optical band, these systems are dominated by the light of the central galaxy. They were interpreted as old syst ems that had enough time to merge all the M* galaxies within the central one. During the last two decades many observational studies were performed to prove the old and relaxed state of fossil systems. The majority of these studies, that spans a wide range of topics including halos global scaling relations, dynamical substructures, stellar populations, and galaxy luminosity functions, seem to challenge this scenario. The general picture that can be obtained by reviewing all the observational works is that the fossil state could be transitional. Indeed, the formation of the large magnitude gap observed in fossil systems could be related to internal processes rather than an old formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا