ترغب بنشر مسار تعليمي؟ اضغط هنا

Letter of Intent: The Hyper-Kamiokande Experiment --- Detector Design and Physics Potential ---

80   0   0.0 ( 0 )
 نشر من قبل Masato Shiozawa
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose the Hyper-Kamiokande (Hyper-K) detector as a next generation underground water Cherenkov detector. It will serve as a far detector of a long baseline neutrino oscillation experiment envisioned for the upgraded J-PARC, and as a detector capable of observing -- far beyond the sensitivity of the Super-Kamiokande (Super-K) detector -- proton decays, atmospheric neutrinos, and neutrinos from astronomical origins. The baseline design of Hyper-K is based on the highly successful Super-K, taking full advantage of a well-proven technology. (to be continued)



قيم البحث

اقرأ أيضاً

Hyper-Kamiokande consists of two identical water-Cherenkov detectors of total 520~kt with the first one in Japan at 295~km from the J-PARC neutrino beam with 2.5$^{textrm{o}}$ Off-Axis Angles (OAAs), and the second one possibly in Korea in a later st age. Having the second detector in Korea would benefit almost all areas of neutrino oscillation physics mainly due to longer baselines. There are several candidate sites in Korea with baselines of 1,000$sim$1,300~km and OAAs of 1$^{textrm{o}}$$sim$3$^{textrm{o}}$. We conducted sensitivity studies on neutrino oscillation physics for a second detector, either in Japan (JD $times$ 2) or Korea (JD + KD) and compared the results with a single detector in Japan. Leptonic CP violation sensitivity is improved especially when the CP is non-maximally violated. The larger matter effect at Korean candidate sites significantly enhances sensitivities to non-standard interactions of neutrinos and mass ordering determination. Current studies indicate the best sensitivity is obtained at Mt. Bisul (1,088~km baseline, $1.3^circ$ OAA). Thanks to a larger (1,000~m) overburden than the first detector site, clear improvements to sensitivities for solar and supernova relic neutrino searches are expected.
Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokan de is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW $times$ 10$^7$ sec integrated proton beam power (corresponding to $1.56times10^{22}$ protons on target with a 30 GeV proton beam) to a $2.5$-degree off-axis neutrino beam, it is expected that the leptonic $CP$ phase $delta_{CP}$ can be determined to better than 19 degrees for all possible values of $delta_{CP}$, and $CP$ violation can be established with a statistical significance of more than $3,sigma$ ($5,sigma$) for $76%$ ($58%$) of the $delta_{CP}$ parameter space. Using both $ u_e$ appearance and $ u_mu$ disappearance data, the expected 1$sigma$ uncertainty of $sin^2theta_{23}$ is 0.015(0.006) for $sin^2theta_{23}=0.5(0.45)$.
On the strength of a double Nobel prize winning experiment (Super)Kamiokande and an extremely successful long baseline neutrino programme, the third generation Water Cherenkov detector, Hyper-Kamiokande, is being developed by an international collabo ration as a leading worldwide experiment based in Japan. The Hyper-Kamiokande detector will be hosted in the Tochibora mine, about 295 km away from the J-PARC proton accelerator research complex in Tokai, Japan. The currently existing accelerator will be steadily upgraded to reach a MW beam by the start of the experiment. A suite of near detectors will be vital to constrain the beam for neutrino oscillation measurements. A new cavern will be excavated at the Tochibora mine to host the detector. The experiment will be the largest underground water Cherenkov detector in the world and will be instrumented with new technology photosensors, faster and with higher quantum efficiency than the ones in Super-Kamiokande. The science that will be developed will be able to shape the future theoretical framework and generations of experiments. Hyper-Kamiokande will be able to measure with the highest precision the leptonic CP violation that could explain the baryon asymmetry in the Universe. The experiment also has a demonstrated excellent capability to search for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime. The atmospheric neutrinos will allow to determine the neutrino mass ordering and, together with the beam, able to precisely test the three-flavour neutrino oscillation paradigm and search for new phenomena. A strong astrophysical programme will be carried out at the experiment that will detect supernova neutrinos and will measure precisely solar neutrino oscillation.
This Letter of Intent describes LUXE (Laser Und XFEL Experiment), an experiment that aims to use the high-quality and high-energy electron beam of the European XFEL and a powerful laser. The scientific objective of the experiment is to study quantum electrodynamics processes in the regime of strong fields. High-energy electrons, accelerated by the European XFEL linear accelerator, and high-energy photons, produced via Bremsstrahlung of those beam electrons, colliding with a laser beam shall experience an electric field up to three times larger than the Schwinger critical field (the field at which the vacuum itself is expected to become unstable and spark with spontaneous creation of electron-positron pairs) and access a new regime of quantum physics. The processes to be investigated, which include nonlinear Compton scattering and nonlinear Breit-Wheeler pair production, are relevant to a variety of phenomena in Nature, e.g. in the areas of astrophysics and collider physics and complement recent results in atomic physics. The setup requires in particular the extraction of a minute fraction of the electron bunches from the European XFEL accelerator, the installation of a powerful laser with sophisticated diagnostics, and an array of precision detectors optimised to measure electrons, positrons and photons. Physics sensitivity projections based on simulations are also provided.
Hyper-Kamiokande is the next generation underground water Cherenkov detector that builds on the highly successful Super-Kamiokande experiment. The detector which has an 8.4~times larger effective volume than its predecessor will be located along the T2K neutrino beamline and utilize an upgraded J-PARC beam with 2.6~times beam power. Hyper-Ks low energy threshold combined with the very large fiducial volume make the detector unique, that is expected to acquire an unprecedented exposure of 3.8~Mton$cdot$year over a period of 20~years of operation. Hyper-Kamiokande combines an extremely diverse science program including nucleon decays, long-baseline neutrino oscillations, atmospheric neutrinos, and neutrinos from astrophysical origins. The scientific scope of this program is highly complementary to liquid-argon detectors for example in sensitivity to nucleon decay channels or supernova detection modes. Hyper-Kamiokande construction has started in early 2020 and the experiment is expected to start operations in 2027. The Hyper-Kamiokande collaboration is presently being formed amongst groups from 19 countries including the United States, whose community has a long history of making significant contributions to the neutrino physics program in Japan. US physicists have played leading roles in the Kamiokande, Super-Kamiokande, EGADS, K2K, and T2K programs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا