ترغب بنشر مسار تعليمي؟ اضغط هنا

Chameleon Gravity, Electrostatics, and Kinematics in the Outer Galaxy

121   0   0.0 ( 0 )
 نشر من قبل Razieh Pourhasan
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the fields mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude. In this paper, we argue that thin-shell conditions are equivalent to conducting boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell.



قيم البحث

اقرأ أيضاً

We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational m odification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a LCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to LCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.
Chameleon scalar fields can screen their associated fifth forces from detection by changing their mass with the local density. These models are an archetypal example of a screening mechanism, and have become an important target for both cosmological surveys and terrestrial experiments. In particular there has been much recent interest in searching for chameleon fifth forces in the laboratory. It is known that the chameleon force is less screened around non-spherical sources, but only the field profiles around a few simple shapes are known analytically. In this work we introduce a numerical code that solves for the chameleon field around arbitrary shapes with azimuthal symmetry placed in a spherical vacuum chamber. We find that deviations from spherical symmetry can increase the chameleon acceleration experienced by a test particle by up to a factor of $sim 3$, and that the least screened objects are those which minimize some internal dimension.
We present the radial distribution of the dark matter in two massive, X-ray luminous galaxy clusters, Abell~2142 and Abell~2319, and compare it with the quantity predicted as apparent manifestation of the baryonic mass in the context of the Emergent Gravity scenario, recently suggested from Verlinde (2016). Thanks to the observational strategy of the xmm Cluster Outskirt Programme (X-COP), using the X-ray emission mapped with xmm and the SZ signal in the Planck survey, we recover the gas density, temperature and thermal pressure profiles up to $sim R_{200}$, allowing to constrain at unprecedented level the total mass through the hydrostatic equilibrium equation. We show that, also including systematic uncertainties related to the X-ray based mass modelling, the apparent dark matter shows a radial profile that has a shape different from the traditional dark matter distribution, with larger discrepancies (by a factor 2--3) in the inner ($r<200$ kpc) clusters regions and a remarkable agreement only across $R_{500}$.
128 - A. P. Naik 2020
Theories of gravity that incorporate new scalar degrees of freedom typically require screening mechanisms to ensure consistency with Solar System tests. One widely-studied mechanism -- the chameleon -- can lead to violations of the equivalence princi ple (EP), as screened and unscreened objects fall differently. If the stars are screened but the surrounding dark matter is not, this leads to asymmetry between leading and trailing streams. We provide analytic estimates of the magnitude of this effect for realistic Galactic mass distributions. Using a restricted N-body code, we simulate 4 satellites with a range of masses and orbits, together with a variety of strengths of the fifth force and screening levels of the Milky Way and satellite. The ratio of the cumulative number function of stars in the leading and trailing stream as a function of longitude from the satellite is computable from simulations, measurable from the stellar data and can provide a direct test. We forecast constraints for streams at large Galactocentric distances, using the specific example case of Hu-Sawicki gravity. Streams with apocentres between 100 and 200 kpc provide attainable constraints at the level of $|f_{R0}| = 10^{-7}$. Still more stringent constraints at the level of $10^{-7.5}$ or even $10^{-8}$ are plausible provided the environmental screening of the satellite is accounted for. These would be among the tightest astrophysical constraints to date. We note further signatures of chameleon gravity: (i) the trailing stellar stream may become detached from the dark matter progenitor if all the stars are lost, (ii) in the extreme fifth force regime, striations in the stellar trailing tail may develop, (iii) if the satellite is fully screened, its orbital frequency is lower than that of the associated dark matter, which is preferentially liberated into the leading tidal tail.
We provide a systematic and updated discussion of a research line carried out by our group over the last few years, in which gravity is modified at cosmological distances by the introduction of nonlocal terms, assumed to emerge at an effective level from the infrared behavior of the quantum theory. The requirement of producing a viable cosmology turns out to be very stringent and basically selects a unique model, in which the nonlocal term describes an effective mass for the conformal mode. We discuss how such a specific structure could emerge from a fundamental local theory of gravity, and we perform a detailed comparison of this model with the most recent cosmological datasets, confirming that it fits current data at the same level as $Lambda$CDM. Most notably, the model has striking predictions in the sector of tensor perturbations, leading to a very large effect in the propagation of gravitational wave (GWs) over cosmological distances. At the redshifts relevant for the next generation of GW detectors such as Einstein Telescope, Cosmic Explorer and LISA, this leads to deviations from GR that could be as large as $80%$, and could be verified with the detection of just a single coalescing binary with electromagnetic counterpart. This would also have potentially important consequences for the search of the counterpart since, for a given luminosity distance to the source, as inferred through the GW signal, the actual source redshift could be significantly different from that predicted by $Lambda$CDM. At the redshifts relevant for advanced LIGO/Virgo/Kagra the effect is smaller, but still potentially observable over a few years of runs at target sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا