ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of generalized method of eigenoscillations to problems of nanoplasmonics

99   0   0.0 ( 0 )
 نشر من قبل Mykhaylo Andriychuk I
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A version of generalized eigenoscillation method is applied to the problem about resonant effects in metallic nanoparticles. An approach is proposed, that permits to avoid calculating all higher eigenoscillations except the resonant one. An algorithm for determination of the resonant eigenoscillation, based on the Galerkin procedure, is described in details for the case of bodies of revolution. Model numerical results are presented.

قيم البحث

اقرأ أيضاً

In this paper, we present a numerical method, based on iterative Bregman projections, to solve the optimal transport problem with Coulomb cost. This is related to the strong interaction limit of Density Functional Theory. The first idea is to introdu ce an entropic regularization of the Kantorovich formulation of the Optimal Transport problem. The regularized problem then corresponds to the projection of a vector on the intersection of the constraints with respect to the Kullback-Leibler distance. Iterative Bregman projections on each marginal constraint are explicit which enables us to approximate the optimal transport plan. We validate the numerical method against analytical test cases.
A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the 1D nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-Kolmogorov-Petrovskii-Piskunov equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.
The Picard-Fuchs equation is a powerful mathematical tool which has numerous applications in physics, for it allows to evaluate integrals without resorting to direct integration techniques. We use this equation to calculate both the classical action and the higher-order WKB corrections to it, for the sextic double-well potential and the Lame potential. Our development rests on the fact that the Picard-Fuchs method links an integral to solutions of a differential equation with the energy as a parameter. Employing the same argument we show that each higher-order correction in the WKB series for the quantum action is a combination of the classical action and its derivatives. From this, we obtain a computationally simple method of calculating higher-order quantum-mechanical corrections to the classical action, and demonstrate this by calculating the second-order correction for the sextic and the Lame potential. This paper also serves as a self-consistent guide to the use of the Picard-Fuchs equation.
A brief sketch of computer methods of involutivity analysis of differential equations is presented in context of its application to study degenerate Lagrangian systems. We exemplify the approach by a detailed consideration of a finite-dimensional mod el, the so-called light-cone SU(2) Yang-Mills mechanics. All algorithms are realized in computer algebra system Maple.
The scattering of a wave obeying Helmholtz equation by an elliptic obstacle can be described exactly using series of Mathieu functions. This situation is relevant in optics, quantum mechanics and fluid dynamics. We focus on the case when the waveleng th is comparable to the obstacle size, when the most standard approximations fail. The approximations of the radial (or modified) Mathieu functions using WKB method are shown to be especially efficient, in order to precisely evaluate series of such functions. It is illustrated with the numerical computation of the Green function when the wave is scattered by a single slit or a strip (ribbon).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا