ﻻ يوجد ملخص باللغة العربية
We report magnetic and spectroscopic observations and modeling of the Of?p star HD 148937 within the context of the MiMeS LP at the CFHT. Thirty-two high signal-to-noise ratio circularly polarised (Stokes V) spectra and 13 unpolarised (Stokes I) spectra of HD 148937 were acquired in 2009 and 2010. A definite detection of a Stokes V Zeeman signature is obtained in the grand mean of all observations (in both LSD mean profiles and individual spectral lines). The longitudinal magnetic field inferred from the Stokes V LSD profiles is consistently negative, in contrast to the essentially zero field strength measured from the diagnostic null profiles. A period search of equivalent width measurements confirms the previously-reported 7.03 d variability period. The variation of equivalent widths is not strictly periodic: we present evidence for evolution of the amount or distribution of circumstellar plasma. Interpreting the 7.03 d period as the stellar rotational period within the context of the ORM, we have phased the equivalent widths and longitudinal field measurements. The longitudinal field measurements show a weak sinusoidal variation of constant sign, with extrema out of phase with the H{alpha} variation by about 0.25 cycles. The inferred magnetic configuration confirms the suggestion of Naze et al (2010), who proposed that the weaker variability of HD 148937 as compared to other members of this class is a consequence of the stellar geometry. Based on the derived magnetic properties and published wind characteristics, we find a wind magnetic confinement parameter etaast simeq 20 and rotation parameter W = 0.12, supporting a picture in which the Halpha emission and other line variability have their origin in an oblique, rigidly rotating magnetospheric structure resulting from a magnetically channeled wind. (Abridged.)
We report new spectroscopic observations of the magnetic Of?p star HD 148937 obtained since 2015 that differ qualitatively from its extensive historical record of weak, periodic spectral variations. This remarkable behaviour represents clear evidence
The O9IV star HD 57682, discovered to be magnetic within the context of the MiMeS survey in 2009, is one of only eight convincingly detected magnetic O-type stars. Among this select group, it stands out due to its sharp-lined photospheric spectrum. S
We present for the first time phase-resolved UV spectroscopy of an Of?p star, namely, HD 191612. The observations were acquired with the Space Telescope Imaging Spectrograph (STIS) on-board the Hubble Space Telescope (HST). We report the variability
This paper reports high-precision Stokes V spectra of HD 191612 acquired using the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, in the context of the Magnetism in Massive stars (MiMeS) Project. Using measurements of the equivale
We analyzed the star HD 171219, one of the relatively bright Be stars observed in the seismo field of the CoRoT satellite, in order to determine its physical and pulsation characteristics. Classical Be stars are main-sequence objects of mainly B-type