ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum interferometry with and without an external phase reference

37   0   0.0 ( 0 )
 نشر من قبل Rafal Demkowicz-Dobrzanski
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the role of an external phase reference in quantum interferometry. We point out inconsistencies in the literature with regard to the use of the quantum Fisher information (QFI) in phase estimation interferometric schemes. We discuss the interferometric schemes with and without an external phase reference and show a proper way to use QFI in both situations.

قيم البحث

اقرأ أيضاً

We present an experimental realization of a robust quantum communication scheme [Phys. Rev. Lett. 93, 220501 (2004)] using pairs of photons entangled in polarization and time. Our method overcomes errors due to collective rotation of the polarization modes (e.g., birefringence in optical fiber or misalignment), is insensitive to the phases fluctuation of the interferometer, and does not require any shared reference frame including time reference, except the need to label different photons. The practical robustness of the scheme is further shown by implementing a variation of the Bennett-Brassard 1984 quantum key distribution protocol over 1 km optical fiber.
Multiphase estimation is a paradigmatic example of a multiparameter problem. When measuring multiple phases embedded in interferometric networks, specially-tailored input quantum states achieve enhanced sensitivities compared with both single-paramet er and classical estimation schemes. Significant attention has been devoted to defining the optimal strategies for the scenario in which all of the phases are evaluated with respect to a common reference mode, in terms of optimal probe states and optimal measurement operators. As well, the strategies assume unlimited external resources, which is experimentally unrealistic. Here, we optimize a generalized scenario that treats all of the phases on an equal footing and takes into account the resources provided by external references. We show that the absence of an external reference mode reduces the number of simultaneously estimatable parameters, owing to the immeasurability of global phases, and that the symmetries of the parameters being estimated dictate the symmetries of the optimal probe states. Finally, we provide insight for constructing optimal measurements in this generalized scenario. The experimental viability of this work underlies its immediate practical importance beyond fundamental physics.
70 - Gernot Schaller 2008
Many physically interesting models show a quantum phase transition when a single parameter is varied through a critical point, where the ground state and the first excited state become degenerate. When this parameter appears as a coupling constant, t hese models can be understood as straight-line interpolations between different Hamiltonians $H_{rm I}$ and $H_{rm F}$. For finite-size realizations however, there will usually be a finite energy gap between ground and first excited state. By slowly changing the coupling constant through the point with the minimum energy gap one thereby has an adiabatic algorithm that prepares the ground state of $H_{rm F}$ from the ground state of $H_{rm I}$. The adiabatic theorem implies that in order to obtain a good preparation fidelity the runtime $tau$ should scale with the inverse energy gap and thereby also with the system size. In addition, for open quantum systems not only non-adiabatic but also thermal excitations are likely to occur. It is shown that -- using only local Hamiltonians -- for the 1d quantum Ising model and the cluster model in a transverse field the conventional straight line path can be replaced by a series of straight-line interpolations, along which the fundamental energy gap is always greater than a constant independent on the system size. The results are of interest for adiabatic quantum computation since strong similarities between adiabatic quantum algorithms and quantum phase transitions exist.
We show that entanglement monotones can characterize the pronounced enhancement of entanglement at a quantum phase transition if they are sensitive to long-range high order correlations. These monotones are found to develop a sharp peak at the critic al point and to exhibit universal scaling. We demonstrate that similar features are shared by noise correlations and verify that these experimentally accessible quantities indeed encode entanglement information and probe separability.
Non-classical correlations arising in complex quantum networks are attracting growing interest, both from a fundamental perspective and for potential applications in information processing. In particular, in an entanglement swapping scenario a new ki nd of correlations arise, the so-called nonbilocal correlations that are incompatible with local realism augmented with the assumption that the sources of states used in the experiment are independent. In practice, however, bilocality tests impose strict constraints on the experimental setup and in particular to presence of shared reference frames between the parties. Here, we experimentally address this point showing that false positive nonbilocal quantum correlations can be observed even though the sources of states are independent. To overcome this problem, we propose and demonstrate a new scheme for the violation of bilocality that does not require shared reference frames and thus constitute an important building block for future investigations of quantum correlations in complex networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا