ﻻ يوجد ملخص باللغة العربية
We demonstrate control over the spin state of a semiconductor quantum dot exciton using a polarized picosecond laser pulse slightly detuned from a biexciton resonance. The control pulse follows an earlier pulse, which generates an exciton and initializes its spin state as a coherent superposition of its two non-degenerate eigenstates. The control pulse preferentially couples one component of the exciton state to the biexciton state, thereby rotating the excitons spin direction. We detect the rotation by measuring the polarization of the exciton spectral line as a function of the time-difference between the two pulses. We show experimentally and theoretically how the angle of rotation depends on the detuning of the second pulse from the biexciton resonance.
The dark exciton state in semiconductor quantum dots constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state based quantum information architectures. In this work, we exploit dete
A strong, far-detuned laser can shift the energy levels of an optically active quantum system via the AC Stark effect. We demonstrate that the polarization of the laser results in a spin-selective modification to the energy structure of a charged qua
Solid state quantum emitters have shown strong potential for applications in quantum information, but spectral inhomogeneity of these emitters poses a significant challenge. We address this issue in a cavity-quantum dot system by demonstrating cavity
Waveguide-based spin-photon interfaces on the GaAs platform have emerged as a promising system for a variety of quantum information applications directly integrated into planar photonic circuits. The coherent control of spin states in a quantum dot c
We examine electron transport through semiconductor quantum dot subject to a continuous circularly polarized optical irradiation resonant to the electron - heavy hole transition. Electrons having certain spin polarization experience Rabi oscillation