ﻻ يوجد ملخص باللغة العربية
We find chiral charge order in the superconductor 2H-TaS2 using Scanning Tunneling Microscopy and Spectroscopy (STM/S) at 0.1 K. Topographic images show hexagonal atomic lattice and charge density wave (CDW) with clockwise and counterclockwise charge modulations. Tunneling spectroscopy reveals the superconducting density of states, disappearing at Tc = 1.75 K and showing a wide distribution of values of the superconducting gap, centered around Delta=0.28 meV.
The charge density wave (CDW) state in van der Waals systems shows interesting scaling phenomena as the number of layers can significantly affect the CDW transition temperature, $T_{CDW}$. However, it is often difficult to use conventional methods to
Despite being usually considered two competing phenomena, charge-density-wave and superconductivity coexist in few systems, the most emblematic one being the transition metal dichalcogenide 2H-NbSe$_2$. This unusual condition is responsible for speci
Intertwining quantum order and nontrivial topology is at the frontier of condensed matter physics. A charge density wave (CDW) like order with orbital currents has been proposed as a powerful resource for achieving the quantum anomalous Hall effect i
We investigate the Ti-doping effect on the charge density wave (CDW) of 1T-TaS2 by combining scanning tunneling microscopy (STM) measurements and first-principle calculations. Although the Ti-doping induced phase evolution seems regular with increasi
In cuprate high-temperature superconductors, an antiferromagnetic Mott insulating state can be destabilized toward unconventional superconductivity by either hole- or electron-doping. In addition to these two electronic phases there is now a copious