ترغب بنشر مسار تعليمي؟ اضغط هنا

The Evolution of Radio Galaxies and X-ray Point Sources in Coma Cluster Progenitors Since z~1.2

82   0   0.0 ( 0 )
 نشر من قبل Quyen Hart
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Quyen N. Hart




اسأل ChatGPT حول البحث

Using Chandra imaging spectroscopy and Very Large Array (VLA) L-band radio maps, we have identified radio sources at P_{1.4GHz} >=5x10^{23} W Hz^{-1} and X-ray point sources (XPSs) at L_{0.3-8keV}>=5x10^{42} erg s^{-1} in L>L* galaxies in 12 high-redshift (0.4<z<1.2) clusters of galaxies. The radio galaxies and XPSs in this cluster sample, chosen to be consistent with Coma Cluster progenitors at these redshifts, are compared to those found at low-z analyzed in Hart et al. (2009). Within a projected radius of 1 Mpc of the cluster cores, we find 17 cluster radio galaxies (11 with secure redshifts, including one luminous FR II radio source at z=0.826, and 6 more with host galaxy colors similar to cluster ellipticals). The radio luminosity function (RLF) of the cluster radio galaxies as a fraction of the cluster red sequence (CRS) galaxies reveals significant evolution of this population from high-z to low-z, with higher power radio galaxies situated in lower temperature clusters at earlier epochs. Additionally, there is some evidence that cluster radio galaxies become more centrally concentrated than CRS galaxies with cosmic time. Within this same projected radius, we identify 7 spectroscopically-confirmed cluster XPSs, all with CRS host galaxy colors. Consistent with the results from Martini et al. (2009), we estimate a minimum X-ray active fraction of 1.4+/-0.8% for CRS galaxies in high-z clusters, corresponding to an approximate 10-fold increase from 0.15+/-0.15% at low-z. Although complete redshift information is lacking for several XPSs in z>0.4 cluster fields, the increased numbers and luminosities of the CRS radio galaxies and XPSs suggest a substantial (9-10 fold) increase in the heat injected into high redshift clusters by AGN compared to the present epoch.



قيم البحث

اقرأ أيضاً

A large fraction of the stellar mass in galaxy clusters is thought to be contained in the diffuse low surface brightness intracluster light (ICL). Being bound to the gravitational potential of the cluster rather than any individual galaxy, the ICL co ntains much information about the evolution of its host cluster and the interactions between the galaxies within. However due its low surface brightness it is notoriously difficult to study. We present the first detection and measurement of the flux contained in the ICL at z~1. We find that the fraction of the total cluster light contained in the ICL may have increased by factors of 2-4 since z~1, in contrast to recent findings for the lack of mass and scale size evolution found for brightest cluster galaxies. Our results suggest that late time buildup in cluster cores may occur more through stripping than merging and we discuss the implications of our results for hierarchical simulations.
Based on Suzaku X-ray observations, we study the hot gas around the NGC4839 group of galaxies and the radio relic in the outskirts of the Coma cluster. We find a gradual decline in the gas temperature from 5 keV around NGC4839 to 3.6 keV at the radio relic, across which there is a further, steeper drop down to 1.5 keV. This drop as well as the observed surface brightness profile are consistent with a shock with Mach number M = 2.2 pm 0.5 and velocity vs = (1410 pm 110) km s^-1. A lower limit of B > 0.33 mu G is derived on the magnetic field strength around the relic from upper limits to inverse Compton X-ray emission. Although this suggests that the non-thermal electrons responsible for the relic are generated by diffusive shock acceleration (DSA), the relation between the measured Mach number and the electron spectrum inferred from radio observations are inconsistent with that expected from the simplest, test-particle theory of DSA. Nevertheless, DSA is still viable if it is initiated by the injection of a pre-existing population of non-thermal electrons. Combined with previous measurements, the temperature profile of Coma in the southwest direction is shallower outside NGC4839 and also slightly shallower in the outermost region. The metal abundance around NGC4839 is confirmed to be higher than in its vicinity, implying a significant peak in the abundance profile that decreases to 0.2 solar toward the outskirts. We interpret these facts as due to ram pressure stripping of metal-enriched gas from NGC4839 as it falls into Coma. The relic shock may result from the combined interaction of pre-existing intracluster gas, gas associated with NGC 4839, and cooler gas flowing in from the large-scale structure filament in the southwest.
142 - Alan Dressler 2009
We present the star formation rate (SFR) and starburst fraction (SBF) for a sample of field galaxies from the ICBS intermediate-redshift cluster survey. We use [O II] and Spitzer 24 micron fluxes to measure SFRs, and 24 micron fluxes and H-delta abso rption to measure of SBFs, for both our sample and a present-epoch field sample from the Sloan Digital Sky Survey (SDSS) and Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We find a precipitous decline in the SFR since z=1, in agreement with other studies, as well as a corresponding rapid decline in the fraction of galaxies undergoing long-duration moderate-amplitude starbursts. We suggest that the change in both the rate and mode of star formation could result from the strong decrease since z=1 of gas available for star formation.
93 - Y. Zhang , C. Miller , T. Mckay 2015
Using the science verification data of the Dark Energy Survey (DES) for a new sample of 106 X-Ray selected clusters and groups, we study the stellar mass growth of Bright Central Galaxies (BCGs) since redshift 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into analysis of a redshift-dependent BCG-cluster mass relation, $m_{*}propto(frac{M_{200}}{1.5times 10^{14}M_{odot}})^{0.24pm 0.08}(1+z)^{-0.19pm0.34}$, and compare the observed relation to the model prediction. We estimate the average growth rate since $z = 1.0$ for BCGs hosted by clusters of $M_{200, z}=10^{13.8}M_{odot}$, at $z=1.0$: $m_{*, BCG}$ appears to have grown by $0.13pm0.11$ dex, in tension at $sim 2.5 sigma$ significance level with the $0.40$ dex growth rate expected from the semi-analytic model. We show that the buildup of extended intra-cluster light after $z=1.0$ may alleviate this tension in BCG growth rates.
428 - Irina Marinova 2010
We use ACS data from the HST Treasury survey of the Coma cluster (z~0.02) to study the properties of barred galaxies in the Coma core, the densest environment in the nearby Universe. This study provides a complementary data point for studies of barre d galaxies as a function of redshift and environment. From ~470 cluster members brighter than M_I = -11 mag, we select a sample of 46 disk galaxies (S0--Im) based on visual classification. The sample is dominated by S0s for which we find an optical bar fraction of 47+/-11% through ellipse fitting and visual inspection. Among the bars in the core of the Coma cluster, we do not find any very large (a_bar > 2 kpc) bars. Comparison to other studies reveals that while the optical bar fraction for S0s shows only a modest variation across low-to-intermediate density environments (field to intermediate-density clusters), it can be higher by up to a factor of ~2 in the very high-density environment of the rich Coma cluster core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا