ﻻ يوجد ملخص باللغة العربية
We performed a statistical analysis of half-power pulse-widths of the core components in average pulsar profiles. We confirmed an existence of the lower bound of the distribution of half-power pulse-width versus the pulsar period W50~2.45deg P^(-0.5) found by Rankin (1990). Using our much larger database we found W50= (2.51 +/- 0.08)deg P^(-0.50 +/-0.02) for 21 pulsars with double-pole interpulses for which measurement of the core component width was possible. On the other hand, all single-pole interpulse cases lie in the swarm of pulsars above the boundary line. Using the Monte Carlo simulations based on exact geometrical calculations we found that the Rankins method of estimation of the inclination angle alpha ~ asin(2.45deg P^(-0.5)/W50) in pulsars with core components is quite good an approximation, except for very small angles alpha in almost aligned rotators.
This work is a continuation of two previous papers of a series, in which we examined the pulse-width statistics of normal radio pulsars. In the first paper we compiled the largest ever database of pulsars with interpulses in their mean profiles. In t
We performed Monte Carlo simulations of different properties of pulsar radio emission, such as: pulsar periods, pulse-widths, inclination angles and rates of occurrence of interpulse emission (IP). We used recently available large data sets of the pu
The Monte Carlo simulations of pulsar periods, pulse-widths and magnetic inclination angles are performed. Using the available observational data sets we study a possible trial parent distribution functions by means of the Kolmogorov-Smirnov signific
Timing noise in the data on accretion-powered millisecond pulsars (AMP) appears as irregular pulse phase jumps on timescales from hours to weeks. A large systematic phase drift is also observed in the first discovered AMP SAX J1808.4-3658. To study t
As part of a European Pulsar Network (EPN) multi-telescope observing campaign, we performed simultaneous multi-frequency observations at 1.4, 4.9 and 8.4 GHz during July 2006 and quasi-simultaneous multi-frequency observations from Decem- ber 2006 un