ﻻ يوجد ملخص باللغة العربية
In this paper, we study SLOCC determinant invariants of order 2^{n/2} for any even n qubits which satisfy the SLOCC determinant equations. The determinant invariants can be constructed by a simple method and the set of all these determinant invariants is complete with respect to permutations of qubits. SLOCC entanglement classification can be achieved via the vanishing or not of the determinant invariants. We exemplify the method for several even number of qubits, with an emphasis on six qubits.
We study the entanglement classification under stochastic local operations and classical communication (SLOCC) for odd n-qubit pure states. For this purpose, we introduce the rank with respect to qubit i for an odd n-qubit state. The ranks with respe
We develop a simple method for constructing polynomial invariants of degree 4 for even-$n$ qubits and give explicit expressions for these polynomial invariants. We demonstrate the invariance of the polynomials under stochastic local operations and cl
We investigate the proportional relationships for spectrums and for SJNFs (Standard Jordan Normal Forms) of the matrices constructed from coefficient matrices of two SLOCC (stochastic local operations and classical communication) equivalent states of
In Phys. Rev. A 62, 062314 (2000), D{u}r, Vidal and Cirac indicated that there are infinitely many SLOCC classes for four qubits. Verstraete, Dehaene, and Verschelde in Phys. Rev. A 65, 052112 (2002) proposed nine families of states corresponding to
After recalling different formulations of the definition of supersymmetric quantum mechanics given in the literature, we discuss the relationships between them in order to provide an answer to the question raised in the title.