ﻻ يوجد ملخص باللغة العربية
We study the impact parameter dependence of inelasticity in the framework of an updated geometrical model for multiplicity distribution. A formula in which the inelasticity is related to the eikonal is obtained. This framework permits a calculation of the multiplicity distributions as well as the inelasticity once the eikonal function is given. Adopting a QCD inspired parametrization for the eikonal, in which the gluon-gluon contribution dominates at high energy and determines the asymptotic behavior of the cross sections, we find that the inelasticity decreases as collision energy is increased. Our results predict the KNO scaling violation observed at LHC energies by CMS Collaboration.
The dependence of the inelasticity in terms of the center of mass energy is studied in the eikonal formalism, which provides connection between elastic and inelastic channels. Due to the absence of inelasticity experimental datasets, the present anal
The dependence of the differential cross section ${mathrm{d}sigma}/{mathrm{d}p_{perp}}$ of inclusive heavy quark production in pp and $bar{mathrm{p}}$p collisions on the renormalization and factorization scales is investigated. The implications of ou
A new variant of the effective pomeron exchange model is proposed for the description of the correlation, observed in $pp$ and $pbar{p}$ collisions at center-of-mass energy from SPS to LHC, between mean transverse momentum and charged particles multi
In continuation of our earlier work, in which we analysed the charged particle multiplicities in leptonic and hadronic interactions at different center of mass energies in full phase space as well as in restricted phase space with the shifted Gompert
The impact parameter dependence of color charge correlators in the proton is obtained from the light front formalism in light cone gauge. We include NLO corrections due to the $|qqqgrangle$ Fock state via light-cone perturbation theory. Near the cent