ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of the low-temperature phase-separated state under pressure in (Eu$_{1-x}$Gd$_{x}$)$_{0.6}$Sr$_{0.4}$MnO$_{3}$ ($x=0,0.1$)

114   0   0.0 ( 0 )
 نشر من قبل Matsukawa Michiaki
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have demonstrated the effect of pressure on the steplike metamagnetic transition and its associated magnetostriction in (Eu$_{1-x}$Gd$_{x}$)$_{0.6}$Sr$_{0.4}$MnO$_{3}$ ($x=0$ and 0.1). The critical field initiating the field induced ferromagnetic transition in both samples is lowered by the applied pressure. The further application of external pressure up to 1.2 GPa on the $x=0$ parent sample causes a spontaneous ferromagnetic transition with a second-oder like character, leading to collapses of the steplike transition and its concomitant lattice striction. These findings indicate a crucial role of the low-temperature phase separated state characterized by a suppressed magnetization upon decreasing temperature.



قيم البحث

اقرأ أيضاً

We investigated slow relaxations of the magnetostriction and residual magnetostriction of the phase-separated system (Eu$_{1-x}$Gd$_{x}$)$_{0.6}$Sr$_{0.4}$MnO$_3$, in which the metamagnetic transition from a paramagnetic insulating state to a ferroma gnetic metallic state is accompanied by a lattice shrinkage. The relaxations are well fitted by a stretched exponential function, suggesting the strong frustraction between the double exchange interaction and Jahn-Teller effect. We have revealed that the Gd substitution suppresses the frozen phase-separated phase at low temperatures and stabilizes the paramagnetic insulating state in the dynamic phase-separated phase at intermediate temperatures. The former origin would be the randomness effect and the latter would be the suppression of the double exchange interaction.
We studied for the first time the magnetic phase diagram of the rare-earth manganites series Gd$_{1-x}$Ca$_{x}$MnO$_{3}$ (GCMO) over the full concentration range based on density functional theory. GCMO has been shown to form solid solutions. We take into account this disordered character by adapting special quasi random structures at different concentration steps. The magnetic phase diagram is mainly described by means of the magnetic exchange interactions between the Mn sites and Monte Carlo simulations were performed to estimate the corresponding transition temperatures. They agree very well with recent experiments. The hole doped region $x<0.5$ shows a strong ferromagnetic ground state, which competes with A-type antiferromagnetism at higher Ca concentrations $x>0.6$.
The transport and magnetic properties of correlated La{0.53}Sr{0.47}MnO{3} ultrathin films, grown epitaxially on SrTiO{3}, show a sharp cusp at the structural transition temperature of the substrate. Using a combination of experiment and theory we sh ow that the cusp is a result of resonant coupling between the charge carriers in the film and a soft phonon mode in the SrTiO{3}, mediated through oxygen octahedra in the film. The amplitude of the mode diverges towards the transition temperature, and phonons are launched into the first few atomic layers of the film affecting its electronic state.
A laboratory hard X-ray photoelectron spectroscopy (HXPS) system equipped with a monochromatic Cr K$alpha$ ($h u = 5414.7$ eV) X-ray source was applied to an investigation of the core-level electronic structure of La$_{1-x}$Sr$_x$MnO$_3$. No apprecia ble high binding-energy shoulder in the O $1s$ HXPS spectra were observed while an enhanced low binding-energy shoulder structure in the Mn $2p_{3/2}$ HXPS spectra were observed, both of which are manifestation of high bulk sensitivity. Such high bulk sensitivity enabled us to track the Mn $2p_{3/2}$ shoulder structure in the full range of $x$, giving us a new insight into the binding-energy shift of the Mn $2p_{3/2}$ core level. Comparisons with the results using the conventional laboratory XPS ($h u = 1486.6$ eV) as well as those using a synchrotron radiation source ($h u = 7939.9$ eV) demonstrate that HXPS is a powerful and convenient tool to analyze the bulk electronic structure of a host of different compounds.
Magnetic anisotropy of epitaxially grown thin films is affected by the strain from the substrates due to a combined effect of distorted electronic structure and spin-orbit interaction (SOI). As an inverse process, one expects an anisotropy of the ele ctronic structure induced by magnetization in the presence of SOI. We have studied the charge-density anisotropy induced by magnetization in thin films of the ferromagnetic metal La$_{1-x}$Sr$_{x}$MnO$_3$ via x-ray magnetic linear dichroism (XMLD). XMLD measurements on thin films with various thicknesses have shown that the XMLD intensity is proportional to the square of the ferromagnetic moment. Using the XMLD sum rule and cluster-model calculation, it has been shown that more Mn 3$d$ electrons are distributed in orbitals elongated along the direction parallel to the spin polarization than in orbitals elongated in the direction perpendicular to it. The cluster-model calculation has shown that the effect of tensile strain from the SrTiO$_3$ substrate on the XMLD spectra is also consistent with the observed XMLD spectral line shapes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا