ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-optical Kerr Effect Studies of Square Artificial Spin Ice

457   0   0.0 ( 0 )
 نشر من قبل Nitin Samarth
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a magneto-optical Kerr effect study of the collective magnetic response of artificial square spin ice, a lithographically-defined array of single-domain ferromagnetic islands. We find that the anisotropic inter-island interactions lead to a non-monotonic angular dependence of the array coercive field. Comparisons with micromagnetic simulations indicate that the two perpendicular sublattices exhibit distinct responses to island edge roughness, which clearly influence the magnetization reversal process. Furthermore, such comparisons demonstrate that disorder associated with roughness in the island edges plays a hitherto unrecognized but essential role in the collective behavior of these systems.



قيم البحث

اقرأ أيضاً

Magnetization dynamics in an artificial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich s pectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets. Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.
Artificial square spin ices are structures composed of magnetic elements arranged on a geometrically frustrated lattice and located on the sites of a two-dimensional square lattice, such that there are four interacting magnetic elements at each verte x. Using a semi-analytical approach, we show that square spin ices exhibit a rich spin wave band structure that is tunable both by external magnetic fields and the configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors. Full-scale micromagnetic simulations corroborate our semi-analytical approach. Our results show that artificial square spin ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.
The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of t he building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.
Two-dimensional (2D) massive Dirac electrons possess a finite Berry curvature, with Chern number $pm 1/2$, that entails both a quantized dc Hall response and a subgap full-quarter Kerr rotation. The observation of these effects in 2D massive Dirac ma terials such as gapped graphene, hexagonal boron nitride or transition metal dichalcogenides (TMDs) is obscured by the fact that Dirac cones come in pairs with opposite sign Berry curvatures, leading to a vanishing Chern number. Here, we show that the presence of spin-orbit interactions, combined with an exchange spin splitting induced either by diluted magnetic impurities or by proximity to a ferromagnetic insulator, gives origin to a net magneto-optical Kerr effect in such systems. We focus on the case of TMD monolayers and study the dependence of Kerr rotation on frequency and exchange spin splitting. The role of the substrate is included in the theory and found to critically affect the results. Our calculations indicate that state-of-the-art magneto-optical Kerr spectroscopy can detect a single magnetic impurity in diluted magnetic TMDs.
In this paper we develop the excitonic theory of Kerr rotation angle in a two-dimensional (2D) transition metal dichalcogenide at zero magnetic field. The finite Kerr angle is induced by the interplay between spin-orbit splitting and proximity exchan ge coupling due to the presence of a ferromagnet. We compare the excitonic effect with the single particle theory approach. We show that the excitonic properties of the 2D material lead to a dramatic change in the frequency dependence of the optical response function. We also find that the excitonic corrections enhance the optical response by a factor of two in the case of MoS2 in proximity to a Cobalt thin film.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا