ترغب بنشر مسار تعليمي؟ اضغط هنا

Singular sectors of the 1-layer Benney and dToda systems and their interrelations

593   0   0.0 ( 0 )
 نشر من قبل Boris Konopelchenko
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Complete description of the singular sectors of the 1-layer Benney system (classical long wave equation) and dToda system is presented. Associated Euler-Poisson-Darboux equations E(1/2,1/2) and E(-1/2,-1/2) are the main tool in the analysis. A complete list of solutions of the 1-layer Benney system depending on two parameters and belonging to the singular sector is given. Relation between Euler-Poisson-Darboux equations E(a,a) with opposite sign of a is discussed.



قيم البحث

اقرأ أيضاً

99 - Edwin Langmann 2007
There exists a large class of quantum many-body systems of Calogero-Sutherland type where all particles can have different masses and coupling constants and which nevertheless are such that one can construct a complete (in a certain sense) set of exa ct eigenfunctions and corresponding eigenvalues, explicitly. Of course there is a catch to this result: if one insists on these eigenfunctions to be square integrable then the corresponding Hamiltonian is necessarily non-hermitean (and thus provides an example of an exactly solvable PT-symmetric quantum-many body system), and if one insists on the Hamiltonian to be hermitean then the eigenfunctions are singular and thus not acceptable as quantum mechanical eigenfunctions. The standard Calogero-Sutherland Hamiltonian is special due to the existence of an integral operator which allows to transform these singular eigenfunctions into regular ones.
Based on the Chen--Moller--Sauvaget formula, we apply the theory of integrable systems to derive three equations for the generating series of the Masur--Veech volumes ${rm Vol} , mathcal{Q}_{g,n}$ associated with the principal strata of the moduli sp aces of quadratic differentials, and propose refinements of the conjectural formulas given in [12,4] for the large genus asymptotics of ${rm Vol} , mathcal{Q}_{g,n}$ and of the associated area Siegel--Veech constants.
152 - S. Stalin , M. Senthilvelan 2012
In this article, we construct loop soliton solutions and mixed soliton - loop soliton solution for the Degasperis-Procesi equation. To explore these solutions we adopt the procedure given by Matsuno. By appropriately modifying the $tau$-function give n in the above paper we derive these solutions. We present the explicit form of one and two loop soliton solutions and mixed soliton - loop soliton solutions and investigate the interaction between (i) two loop soliton solutions in different parametric regimes and (ii) a loop soliton with a conventional soliton in detail.
The time evolution problem for non-self adjoint second order differential operators is studied by means of the path integral formulation. Explicit computation of the path integral via the use of certain underlying stochastic differential equations, w hich naturally emerge when computing the path integral, leads to a universal expression for the associated measure regardless of the form of the differential operators. The discrete non-linear hierarchy (DNLS) is then considered and the corresponding hierarchy of solvable, in principle, SDEs is extracted. The first couple members of the hierarchy correspond to the discrete stochastic transport and heat equations. The discrete stochastic Burgers equation is also obtained through the analogue of the Cole-Hopf transformation. The continuum limit is also discussed.
We prove the integrability and superintegrability of a family of natural Hamiltonians which includes and generalises those studied in some literature, originally defined on the 2D Minkowski space. Some of the new Hamiltonians are a perfect analogy of the well-known superintegrable system on the Euclidean plane proposed by Tremblay-Turbiner-Winternitz and they are defined on Minkowski space, as well as on all other 2D manifolds of constant curvature, Riemannian or pseudo-Riemannian. We show also how the application of the coupling-constant-metamorphosis technique allows us to obtain new superintegrable Hamiltonians from the previous ones. Moreover, for the Minkowski case, we show the quantum superintegrability of the corresponding quantum Hamiltonian operator.Our results are obtained by applying the theory of extended Hamiltonian systems, which is strictly connected with the geometry of warped manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا