ﻻ يوجد ملخص باللغة العربية
We have performed high-resolution angle-resolved photoemission spectroscopy on single-layered cuprate Bi$_2$Sr$_2$CuO$_6$ to clarify the origin of the pseudogap. By using various photon energies, we have succeeded in directly observing two different pseudogaps with two different energy scales which coexist in the antinodal region: one reflects the $d_{x^2-y^2}$-wave pairing strength while the other has a larger energy scale suggesting an origin distinct from superconductivity. The observed two-pseudogap behavior provides a key to fully understand the pseudogap phenomena in cuprates.
We introduce a formalism for calculating dynamic response functions using experimental single particle Greens functions derived from angle resolved photoemission spectroscopy (ARPES). As an illustration of this procedure we estimate the dynamic spin
The momentum and temperature dependence of the superconducting gap and pseudogap in optimally-doped Bi$_2$Sr$_{1.6}$La$_{0.4}$CuO$_6$ superconductor is investigated by super-high resolution laser-based angle-resolved photoemission spectroscopy. The m
High resolution angle-resolved photoemission measurements have been carried out on (Sr,K)Fe$_2$As$_2$ superconductor (Tc=21 K). Three hole-like Fermi surface sheets are clearly resolved for the first time around the Gamma point. The overall electroni
We observe apparent hole pockets in the Fermi surfaces of single-layer Bi-based cuprate superconductors from angle-resolved photoemission (ARPES). From detailed low-energy electron diffraction measurements and an analysis of the ARPES polarization-de
We performed an angle-resolved photoemission spectroscopy study of the Ni-based superconductor SrNi$_2$As$_2$. Electron and hole Fermi surface pockets are observed, but their different shapes and sizes lead to very poor nesting conditions. The experi