ترغب بنشر مسار تعليمي؟ اضغط هنا

A 5 Micron Image of beta Pictoris b at a Sub-Jupiter Projected Separation: Evidence for a Misalignment Between the Planet and the Inner, Warped Disk

175   0   0.0 ( 0 )
 نشر من قبل Thayne Currie
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present and analyze a new M detection of the young exoplanet beta Pictoris b from 2008 VLT/NaCo data at a separation of ~ 4 AU and a high signal-to-noise rereduction of L data taken in December 2009. Based on our orbital analysis, the planets orbit is viewed almost perfectly edge-on (i ~ 89 degrees) and has a Saturn-like semimajor axis of 9.50 (+3.93, -1.7) AU. Intriguingly, the planets orbit is aligned with the major axis of the outer disk (Omega ~ 31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planets existence. Our results motivate new studies to clarify how $beta$ Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk.



قيم البحث

اقرأ أيضاً

We present $H$-band observations of $beta$ Pic with the Gemini Planet Imagers (GPIs) polarimetry mode that reveal the debris disk between ~0.3 (~6 AU) and ~1.7 (~33 AU), while simultaneously detecting $beta$ Pic $b$. The polarized disk image was fit with a dust density model combined with a Henyey-Greenstein scattering phase function. The best fit model indicates a disk inclined to the line of sight ($phi=85.27{deg}^{+0.26}_{-0.19}$) with a position angle $theta_{PA}=30.35{deg}^{+0.29}_{-0.28}$ (slightly offset from the main outer disk, $theta_{PA}approx29{deg}$), that extends from an inner disk radius of $23.6^{+0.9}_{-0.6}$ AU to well outside GPIs field of view. In addition, we present an updated orbit for $beta$ Pic $b$ based on new astrometric measurements taken in GPIs spectroscopic mode spanning 14 months. The planet has a semi-major axis of $a=9.2^{+1.5}_{-0.4}$AU, with an eccentricity $eleq 0.26$. The position angle of the ascending node is $Omega=31.75{deg}pm0.15$, offset from both the outer main disk and the inner disk seen in the GPI image. The orbital fit constrains the stellar mass of $beta$ Pic to $1.60pm0.05 M_{odot}$. Dynamical sculpting by $beta$ Pic $b$ cannot easily account for the following three aspects of the inferred disk properties: 1) the modeled inner radius of the disk is farther out than expected if caused by $beta$ Pic b; 2) the mutual inclination of the inner disk and $beta$ Pic $b$ is $4{deg}$, when it is expected to be closer to zero; and 3) the aspect ratio of the disk ($h_0 = 0.137^{+0.005}_{-0.006}$) is larger than expected from interactions with $beta$ Pic $b$ or self-stirring by the disks parent bodies.
Our objective is to estimate the C/O ratio in the atmosphere of beta Pictoris b and obtain an estimate of the dynamical mass of the planet, as well as to refine its orbital parameters using high-precision astrometry. We used the GRAVITY instrument wi th the four 8.2 m telescopes of the Very Large Telescope Interferometer to obtain K-band spectro-interferometric data on $beta$ Pic b. We extracted a medium resolution (R=500) K-band spectrum of the planet and a high-precision astrometric position. We estimated the planetary C/O ratio using two different approaches (forward modeling and free retrieval) from two different codes (ExoREM and petitRADTRANS, respectively). Finally, we used a simplified model of two formation scenarios (gravitational collapse and core-accretion) to determine which can best explain the measured C/O ratio. Our new astrometry disfavors a circular orbit for $beta$ Pic b ($e=0.15^{+0.05}_{-0.04}$). Combined with previous results and with Hipparcos/GAIA measurements, this astrometry points to a planet mass of $M = 12.7pm{}2.2,M_mathrm{Jup}$. This value is compatible with the mass derived with the free-retrieval code petitRADTRANS using spectral data only. The forward modeling and free-retrieval approches yield very similar results regarding the atmosphere of beta Pic b. In particular, the C/O ratios derived with the two codes are identical ($0.43pm{}0.05$ vs $0.43^{+0.04}_{-0.03}$). We argue that if the stellar C/O in $beta$ Pic is Solar, then this combination of a very high mass and a low C/O ratio for the planet suggests a formation through core-accretion, with strong planetesimal enrichment.
We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R_PL = 10.12 pm 0.56 R_E) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least three transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between Neptune to Jupiter. These detections nearly double the number of gas giant planet candidates orbiting at habitable zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd-sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.
We present deep HST/STIS coronagraphic images of the Beta Pic debris disk obtained at two epochs separated by 15 years. The new images and the re-reduction of the 1997 data provide the most sensitive and detailed views of the disk at optical waveleng ths as well as the yet smallest inner working angle optical coronagraphic image of the disk. Our observations characterize the large-scale and inner-disk asymmetries and we identify multiple breaks in the disk radial surface brightness profile. We study in detail the radial and vertical disk structure and show that the disk is warped. We explore the disk at the location of the Beta Pic b super-jupiter and find that the disk surface brightness slope is continuous between 0.5 and 2.0 arcsec, arguing for no change at the separations where Beta Pic b orbits. The two epoch images constrain the disk surface brightness evolution on orbital and radiation pressure blow-out timescales. We place an upper limit of 3% on the disk surface brightness change between 3-5 arcsec, including the locations of the disk warp, and the CO and dust clumps. We discuss the new observations in the context of high-resolution multi-wavelength images and divide the disk asymmetries in two groups: axisymmetric and non-axisymmetric. The axisymmetric structures (warp, large-scale butterfly, etc.) are consistent with disk structure models that include interactions of a planetesimal belt and a non-coplanar giant planet. The non-axisymmetric features, however, require a different explanation.
Using the Gemini Planet Imager (GPI) located at Gemini South, we measured the near-infrared (1.0-2.4 micron) spectrum of the planetary companion to the nearby, young star $beta$ Pictoris. We compare the spectrum obtained with currently published mode l grids and with known substellar objects and present the best matching models as well as the best matching observed objects. Comparing the empirical measurement of the bolometric luminosity to evolutionary models, we find a mass of $12.9pm0.2$ $mathcal{M}_mathrm{Jup}$, an effective temperature of $1724pm15$ K, a radius of $1.46pm0.01$ $mathcal{R}_mathrm{Jup}$, and a surface gravity of $log g = 4.18pm0.01$ [dex] (cgs). The stated uncertainties are statistical errors only, and do not incorporate any uncertainty on the evolutionary models. Using atmospheric models, we find an effective temperature of $1700-1800$ K and a surface gravity of $log g = 3.5$-$4.0$ [dex] depending upon model. These values agree well with other publications and with hot-start predictions from planetary evolution models. Further, we find that the spectrum of $beta$ Pic b best matches a low-surface gravity L2$pm$1 brown dwarf. Finally comparing the spectrum to field brown dwarfs we find the the spectrum best matches 2MASS J04062677-381210 and 2MASS J03552337+1133437.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا