ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological effects of decaying cosmic string loops with TeV scale width

80   0   0.0 ( 0 )
 نشر من قبل Koichi Miyamoto
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In supersymmetric theories, cosmic strings produced in the early Universe often have a width of TeV scale, while the tension is much larger. In a scaling regime, an infinite cosmic string releases significant fraction of its energy in the form of string loops. These thick string loops lose their energies efficiently by particle emissions, and hence it may have effects on cosmological observations. We study cosmological implications of string loops with TeV scale width in detail and derive constraints on the tension of the string. Implications on future gravitational wave detectors are also discussed.


قيم البحث

اقرأ أيضاً

We present the results of computational gravitational backreaction on simple models of cosmic string loops. These results give us insight into the general behavior of cusps and kinks on loops, in addition to other features of evolution. Kinks are rou nded off via an asymmetric and divergent correction to the string direction. The result is that cusps emerge in the place of kinks but the resulting smooth string section has a small amount of energy. Existing cusps persist, but quickly lose strength as backreaction removes energy from the string surrounding the cusp. Both kinks and cusps have their location in space shifted slightly with each oscillation.
We study the spectrum of fermionic modes on cosmic string loops. We find no fermionic zero modes nor massive bound states - this implies that vortons stabilized by fermionic currents do not exist. We have also studied kink-(anti)kink and vortex-(anti )vortex systems and find that all systems that have vanishing net topological charge do not support fermionic bound modes.
We construct, for the first time, the time-domain gravitational wave strain waveform from the collapse of a strongly gravitating Abelian Higgs cosmic string loop in full general relativity. We show that the strain exhibits a large memory effect durin g merger, ending with a burst and the characteristic ringdown as a black hole is formed. Furthermore, we investigate the waveform and energy emitted as a function of string width, loop radius and string tension $Gmu$. We find that the mass normalized gravitational wave energy displays a strong dependence on the inverse of the string tension $E_{mathrm{GW}}/M_0propto 1/Gmu$, with $E_{mathrm{GW}}/M_0 sim {cal O}(1)%$ at the percent level, for the regime where $Gmugtrsim10^{-3}$. Conversely, we show that the efficiency is only weakly dependent on the initial string width and initial loop radii. Using these results, we argue that gravitational wave production is dominated by kinematical instead of geometrical considerations.
Observational effects of cosmic string loops depend on how loops are distributed in space. Chernoff cite{Chernoff} has argued that loops can be gravitationally captured in galaxies and that for sufficiently small values of $Gmu$ their distribution fo llows that of dark matter, independently of the loops length. We re-analyze this issue using the spherical model of galaxy formation with full account taken of the gravitational rocket effect -- loop accelerated motion due to asymmetric emission of gravitational waves. We find that only loops greater than a certain size are captured and that the number of captured loops is orders of magnitude smaller than estimated by Chernoff.
Using recent simulation results, we provide the mass and speed spectrum of cosmic string loops. This is the quantity of primary interest for many phenomenological signatures of cosmic strings, and it can be accurately predicted using recently acquire d detailed knowledge of the loop production function. We emphasize that gravitational smoothing of long strings does not play any role in determining the total number of existing loops. We derive a bound on the string tension imposed by recent constraints on the stochastic gravitational wave background from pulsar timing arrays, finding $Gmu leq 2.8times 10^{-9}$. We also provide a derivation of the Boltzmann equation for cosmic string loops in the language of differential forms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا