ترغب بنشر مسار تعليمي؟ اضغط هنا

Expanded Search for z~10 Galaxies from HUDF09, ERS, and CANDELS Data: Evidence for Accelerated Evolution at z>8?

73   0   0.0 ( 0 )
 نشر من قبل Pascal Oesch
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. A. Oesch




اسأل ChatGPT حول البحث

We search for z~10 galaxies over ~160 arcmin^2 of WFC3/IR data in the Chandra Deep Field South, using the public HUDF09, ERS, and CANDELS surveys, that reach to 5sigma depths ranging from 26.9 to 29.4 in H_160 AB mag. z>~9.5 galaxy candidates are identified via J_125-H_160>1.2 colors and non-detections in any band blueward of J_125. Spitzer IRAC photometry is key for separating the genuine high-z candidates from intermediate redshift (z~2-4) galaxies with evolved or heavily dust obscured stellar populations. After removing 16 sources of intermediate brightness (H_160~24-26 mag) with strong IRAC detections, we only find one plausible z~10 galaxy candidate in the whole data set, previously reported in Bouwens et al. (2011). The newer data cover a 3x larger area and provide much stronger constraints on the evolution of the UV luminosity function (LF). If the evolution of the z~4-8 LFs is extrapolated to z~10, six z~10 galaxies are expected in our data. The detection of only one source suggests that the UV LF evolves at an accelerated rate before z~8. The luminosity density is found to increase by more than an order of magnitude in only 170 Myr from z~10 to z~8. This increase is >=4x larger than expected from the lower redshift extrapolation of the UV LF. We are thus likely witnessing the first rapid build-up of galaxies in the heart of cosmic reionization. Future deep HST WFC3/IR data, reaching to well beyond 29 mag, can enable a more robust quantification of the accelerated evolution around z~10.

قيم البحث

اقرأ أيضاً

106 - R. J. Bouwens 2011
Ultra-deep ACS and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope beta, of star-forming galaxies over a wide range in luminosity (0.1L*(z=3) to 2L*(z=3)) at high redshift (z~7 to z~4). Beta is measured using all ACS and WFC3/IR passbands uncontaminated by Ly_alpha and spectral breaks. Extensive tests show that our beta measurements are only subject to minimal biases. Using a different selection procedure, Dunlop et al. recently found large biases in their beta measurements. To reconcile these different results, we simulated both approaches and found that beta measurements for faint sources are subject to large biases if the same passbands are used both to select the sources and to measure beta. High-redshift galaxies show a well-defined rest-frame UV color-magnitude (CM) relationship that becomes systematically bluer towards fainter UV luminosities. No evolution is seen in the slope of the UV CM relationship in the first 1.5 Gyr, though there is a small evolution in the zero-point to redder colors from z~7 to z~4. This suggests that galaxies are evolving along a well-defined sequence in the L(UV)-color (beta) plane (a star-forming sequence?). Dust appears to be the principal factor driving changes in the UV color (beta) with luminosity. These new larger beta samples lead to improved dust extinction estimates at z~4-7 and confirm that the extinction is still essentially zero at low luminosities and high redshifts. Inclusion of the new dust extinction results leads to (i) excellent agreement between the SFR density at z~4-8 and that inferred from the stellar mass density, and (ii) to higher SSFRs at z>~4, suggesting the SSFR may evolve modestly (by factors of ~2) from z~4-7 to z~2.
84 - R. J. Bouwens 2010
We identify 73 z~7 and 59 z~8 candidate galaxies in the reionization epoch, and use this large 26-29.4 AB mag sample of galaxies to derive very deep luminosity functions to <-18 AB mag and the star formation rate density at z~7 and z~8. The galaxy sa mple is derived using a sophisticated Lyman-Break technique on the full two-year WFC3/IR and ACS data available over the HUDF09 (~29.4 AB mag, 5 sigma), two nearby HUDF09 fields (~29 AB mag, 14 arcmin) and the wider area ERS (~27.5 AB mag) ~40 arcmin**2). The application of strict optical non-detection criteria ensures the contamination fraction is kept low (just ~7% in the HUDF). This very low value includes a full assessment of the contamination from lower redshift sources, photometric scatter, AGN, spurious sources, low mass stars, and transients (e.g., SNe). From careful modelling of the selection volumes for each of our search fields we derive luminosity functions for galaxies at z~7 and z~8 to <-18 AB mag. The faint-end slopes alpha at z~7 and z~8 are uncertain but very steep at alpha = -2.01+/-0.21 and alpha=-1.91+/-0.32, respectively. Such steep slopes contrast to the local alpha<~-1.4 and may even be steeper than that at z~4 where alpha=-1.73+/-0.05. With such steep slopes (alpha<~-1.7) lower luminosity galaxies dominate the galaxy luminosity density during the epoch of reionization. The star formation rate densities derived from these new z~7 and z~8 luminosity functions are consistent with the trends found at later times (lower redshifts). We find reasonable consistency, with the SFR densities implied from reported stellar mass densities, being only ~40% higher at z<7. This suggests that (1) the stellar mass densities inferred from the Spitzer IRAC photometry are reasonably accurate and (2) that the IMF at very high redshift may not be very different from that at later times.
One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z ~ 8. Its two-tiered wide and deep strategy bridges significant gaps in existing near-infrared surveys. He re we report on z ~ 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 square arcmin to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J<26.2 mag, and are > 1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright-end of the rest-frame ultraviolet luminosity function of galaxies at z ~ 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z ~ 8. Their derived stellar masses are on the order of a few x 10^9 M_sun, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z ~ 8. The high number density of very luminous and very massive galaxies at z ~ 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.
We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 < z < 8. We use new wide-field near-infrared data in GOODS-S from the CANDELS, HUDF09 and ERS programs to select galaxies via photometric redshift measurements. Our sa mple consists of 2812 candidate galaxies at z > 3.5, including 113 at z = 7 to 8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models, and measure the value of the UV spectral slope (beta) from the best-fit model spectrum. The median value of beta evolves significantly from -1.82 (+0.00,-0.04) at z = 4, to -2.37 (+0.26,-0.06) at z = 7. Additionally, we find that faint galaxies at z = 7 have beta = -2.68 (+0.39,-0.24) (~ -2.4 after correcting for observational bias); this is redder than previous claims in the literature, and does not require exotic stellar populations to explain their colors. This evolution can be explained by an increase in dust extinction, with the timescale consistent with low-mass AGB stars forming the bulk of the dust. We find no significant (< 2-sigma) correlation between beta and M_UV when measuring M_UV at a consistent rest-frame wavelength of 1500 A. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF are considered separately, hinting that dynamic range in sample luminosities may play a role. We do find a strong correlation between beta and the stellar mass at all redshifts, in that more massive galaxies exhibit redder colors. The most massive galaxies in our sample have red colors at each redshift, implying that dust can build up quickly in massive galaxies, and that feedback is likely removing dust from low-mass galaxies at z > 7. Thus the stellar-mass - metallicity relation, previously observed up to z ~ 3, may extend out to z = 7 - 8.
92 - P. A. Oesch 2013
We present a comprehensive analysis of z>8 galaxies based on ultra-deep WFC3/IR data. We constrain the evolution of the UV luminosity function (LF) and luminosity densities from z~11 to z~8 by exploiting all the WFC3/IR data over the Hubble Ultra-Dee p Field from the HUDF09 and the new HUDF12 program, in addition to the HUDF09 parallel field data, as well as wider area WFC3/IR imaging over GOODS-South. Galaxies are selected based on the Lyman Break Technique in three samples centered around z~9, z~10 and z~11, with seven z~9 galaxy candidates, and one each at z~10 and z~11. We confirm a new z~10 candidate (with z=9.8+-0.6) that was not convincingly identified in our first z~10 sample. The deeper data over the HUDF confirms all our previous z>~7.5 candidates as genuine high-redshift candidates, and extends our samples to higher redshift and fainter limits (H_160~29.8 mag). We perform one of the first estimates of the z~9 UV LF and improve our previous constraints at z~10. Extrapolating the lower redshift UV LF evolution should have revealed 17 z~9 and 9 z~10 sources, i.e., a factor ~3x and 9x larger than observed. The inferred star-formation rate density (SFRD) in galaxies above 0.7 M_sun/yr decreases by 0.6+-0.2 dex from z~8 to z~9, in good agreement with previous estimates. The low number of sources found at z>8 is consistent with a very rapid build-up of galaxies across z~10 to z~8. From a combination of all current measurements, we find a best estimate of a factor 10x decrease in the SFRD from z~8 to z~10, following (1+z)^(-11.4+-3.1). Our measurements thus confirm our previous finding of an accelerated evolution beyond z~8, and signify a rapid build-up of galaxies with M_UV<-17.7 within only ~200 Myr from z~10 to z~8, in the heart of cosmic reionization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا