ﻻ يوجد ملخص باللغة العربية
A growing number of applications that generate massive streams of data need intelligent data processing and online analysis. Real-time surveillance systems, telecommunication systems, sensor networks and other dynamic environments are such examples. The imminent need for turning such data into useful information and knowledge augments the development of systems, algorithms and frameworks that address streaming challenges. The storage, querying and mining of such data sets are highly computationally challenging tasks. Mining data streams is concerned with extracting knowledge structures represented in models and patterns in non stopping streams of information. Generally, two main challenges are designing fast mining methods for data streams and need to promptly detect changing concepts and data distribution because of highly dynamic nature of data streams. The goal of this article is to analyze and classify the application of diverse data mining techniques in different challenges of data stream mining. In this paper, we present the theoretical foundations of data stream analysis and propose an analytical framework for data stream mining techniques.
In time-domain astronomy, we need to use the relational database to manage star catalog data. With the development of sky survey technology, the size of star catalog data is larger, and the speed of data generation is faster. So, in this paper, we ma
In this paper, we propose a plugin-based framework for RDF stream processing named PRSP. Within this framework, we can employ SPARQL query engines to process C-SPARQL queries with maintaining the high performance of those engines in a simple way. Tak
We propose hMDAP, a hybrid framework for large-scale data analytical processing on Spark, to support multi-paradigm process (incl. OLAP, machine learning, and graph analysis etc.) in distributed environments. The framework features a three-layer data
With the multiplication of XML data sources, many XML data warehouse models have been proposed to handle data heterogeneity and complexity in a way relational data warehouses fail to achieve. However, XML-native database systems currently suffer from
Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing st