ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative analysis of tunneling magnetoresistance in low-$T_c$ Nb/AlAlOx/Nb and high-$T_c$ Bi$_{2-y}$Pb$_y$Sr$_2$CaCu$_2$O$_{8+delta}$ intrinsic Josephson junctions

102   0   0.0 ( 0 )
 نشر من قبل V. M. Krasnov
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a detailed comparison of magnetotunneling in conventional low-$T_c$ Nb/AlAlOx/Nb junctions with that in slightly overdoped Bi$_{2-y}$Pb$_y$Sr$_2$CaCu$_2$O$_{8+delta}$ [Bi(Pb)-2212] intrinsic Josephson junctions and with microscopic calculations. It is found that both types of junctions behave in a qualitatively similar way. Both magnetic field and temperature suppress superconductivity in the state-conserving manner. This leads to the characteristic sign-change of tunneling magnetoresistance from the negative at the sub-gap to the positive at the sum-gap bias. We derived theoretically and verified experimentally scaling laws of magnetotunneling characteristics and employ them for accurate extraction of the upper critical field $H_{c2}$. For Nb an extended region of surface superconductivity at $H_{c2}<H<H_{c3}$ is observed. The parameters of Bi(Pb)-2212 were obtained from self-consistent analysis of magnetotunneling data at different levels of bias, dissipation powers and for different mesa sizes, which precludes the influence of self-heating. It is found that $H_{c2}(0)$ for Bi(Pb)-2212 is $simeq 70$ T and decreases significantly at $Trightarrow T_c$. The amplitude of sub-gap magnetoresistance is suppressed exponentially at $T>T_c/2$, but remains negative, although very small, above $T_c$. This may indicate existence of an extended fluctuation region, which, however, does not destroy the general second-order type of the phase transition at $T_c$.



قيم البحث

اقرأ أيضاً

151 - S. P. Zhao , X. B. Zhu , 2009
Tunneling spectra of near optimally doped, submicron Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ intrinsic Josephson junctions are presented, and examined in the region where the superconducting gap evolves into pseudogap. The spectra are analyzed using a self -energy model, proposed by Norman {it et al.}, in which both quasiparticle scattering rate $Gamma$ and pair decay rate $Gamma_{Delta}$ are considered. The density of states derived from the model has the familiar Dynes form with a simple replacement of $Gamma$ by $gamma_+$ = ($Gamma$ + $Gamma_{Delta}$)/2. The $gamma_+$ parameter obtained from fitting the experimental spectra shows a roughly linear temperature dependence, which puts a strong constraint on the relation between $Gamma$ and $Gamma_{Delta}$. We discuss and compare the Fermi arc behavior in the pseudogap phase from the tunneling and angle-resolved photoemission spectroscopy experiments. Our results indicate an excellent agreement between the two experiments, which is in favor of the precursor pairing view of the pseudogap.
103 - S. P. Zhao , X. B. Zhu , Y. F. Wei 2007
We report tunneling spectra of near optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ intrinsic Josephson junctions with area of 0.09 $mu$m$^2$, which avoid some fundamental difficulties in the previous tunneling experiments and allow a stable temper ature-dependent measurement. A d-wave Eliashberg analysis shows that the spectrum at 4.2 K can be well fitted by considering electron couplings to a bosonic magnetic resonance mode and a broad high-energy continuum. Above $T_c$, the spectra show a clear pseudogap that persists up to 230 K, and a crossover can be seen indicating two different pseudogap phases existing above $T_c$. The intrinsic electron tunneling nature is discussed in the analysis.
We report an ARPES investigation of the circular dichroism in the first Brillouin zone (BZ) of under- and overdoped Pb-Bi2212 samples. We show that the dichroism has opposite signs for bonding and antibonding components of the bilayer-split CuO-band and is antisymmetric with respect to reflections in both mirror planes parallel to the c-axis. Using this property of the energy and momentum intensity distributions we prove the existence of the bilayer splitting in the normal state of the underdoped compound and compare its value with the splitting in overdoped sample. In agreement with previous studies the magnitude of the interlayer coupling does not depend significantly on doping. We also discuss possible origins of the observed dichroism.
Establishing the presence and the nature of a quantum critical point in their phase diagram is a central enigma of the high-temperature superconducting cuprates. It could explain their pseudogap and strange metal phases, and ultimately their high sup erconducting temperatures. Yet, while solid evidences exist in several unconventional superconductors of ubiquitous critical fluctuations associated to a quantum critical point, in the cuprates they remain undetected until now. Here using symmetry-resolved electronic Raman scattering in the cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, we report the observation of enhanced electronic nematic fluctuations near the endpoint of the pseudogap phase. While our data hint at the possible presence of an incipient nematic quantum critical point, the doping dependence of the nematic fluctuations deviates significantly from a canonical quantum critical scenario. The observed nematic instability rather appears to be tied to the presence of a van Hove singularity in the band structure.
Mixing of topological states with superconductivity could result in topological superconductivity with the elusive Majorana fermions potentially applicable in fault-tolerant quantum computing. One possible candidate considered for realization of topo logical superconductivity is thin bismuth films on Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi2212). Here, we present angle-resolved and core-level photoemission spectroscopy studies of thin Bi films grown {it in-situ} on as-grown Bi2212 that show the absence of proximity effect. We find that the electron transfer from the film to the substrate and the resulting severe underdoping of Bi2212 at the interface is a likely origin for the absence of proximity effect. We also propose a possible way of preventing a total loss of proximity effect in this system. Our results offer a better and more universal understanding of the film/cuprate interface and resolve many issues related to the proximity effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا