ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward an ion-photon quantum interface in an optical cavity

100   0   0.0 ( 0 )
 نشر من قبل Andreas Stute
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate several building blocks for an ion-photon interface based on a trapped Ca ion in an optical cavity. We identify a favorable experimental configuration and measure system parameters, including relative motion of the trapped ion and the resonator mode. A complete spectrum of cavity-assisted Raman transitions between the $4^{2}S_{1/2}$ and $3^{2}D_{5/2}$ manifolds is obtained. On two of these transitions, we generate orthogonally polarized cavity photons, and we demonstrate coherent manipulation of the corresponding pair of atomic states. Possible implementations of atom-photon entanglement and state mapping within the ion-cavity system are discussed.



قيم البحث

اقرأ أيضاً

Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles, and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, these paths transition parameters determine the phase and amplitude of the final entangled state, unless the memory is initially prepared in a superposition state, a step that requires coherent control. Here we report the fully tunable entanglement of a single 40Ca+ ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus presents itself as a promising method for distributing information within quantum networks.
Strong coupling between an atom and an electromagnetic resonator is an important condition in cavity quantum electrodynamics (QED). While strong coupling in various physical systems has been achieved so far, it remained elusive for single atomic ions . In this paper we demonstrate for the first time the coupling of a single ion to an optical cavity with a coupling strength exceeding both atomic and cavity decay rates. We use cavity assisted Raman spectroscopy to precisely characterize the ion-cavity coupling strength and observe a spectrum featuring the normal mode splitting in the cavity transmission due to the ion-cavity interaction. Our work paves the way towards new applications of cavity QED utilizing single trapped ions in the strong coupling regime for quantum optics and quantum technologies.
We present a novel hybrid system where an optical cavity is integrated with a microfabricated planar-electrode ion trap. The trap electrodes produce a tunable periodic potential allowing the trapping of up to 50 separate ion chains spaced by 160 $mu$ m along the cavity axis. Each chain can contain up to 20 individually addressable Ybtextsuperscript{+} ions coupled to the cavity mode. We demonstrate deterministic distribution of ions between the sites of the electrostatic periodic potential and control of the ion-cavity coupling. The measured strength of this coupling should allow access to the strong collective coupling regime with $lesssim$10 ions. The optical cavity could serve as a quantum information bus between ions or be used to generate a strong wavelength-scale periodic optical potential.
A quantum network requires information transfer between distant quantum computers, which would enable distributed quantum information processing and quantum communication. One model for such a network is based on the probabilistic measurement of two photons, each entangled with a distant atom or atomic ensemble, where the atoms represent quantum computing nodes. A second, deterministic model transfers information directly from a first atom onto a cavity photon, which carries it over an optical channel to a second atom; a prototype with neutral atoms has recently been demonstrated. In both cases, the central challenge is to find an efficient transfer process that preserves the coherence of the quantum state. Here, following the second scheme, we map the quantum state of a single ion onto a single photon within an optical cavity. Using an ion allows us to prepare the initial quantum state in a deterministic way, while the cavity enables high-efficiency photon generation. The mapping process is time-independent, allowing us to characterize the interplay between efficiency and fidelity. As the techniques for coherent manipulation and storage of multiple ions at a single quantum node are well established, this process offers a promising route toward networks between ion-based quantum computers.
We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spi n initialization and manipulation achievable in bulk semiconductors. Moreover, the presence of the cavity speeds up the spin initialization process beyond GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا