ترغب بنشر مسار تعليمي؟ اضغط هنا

Applicability of a Representation for the Martins Real-Part Formula in Model-Independent Analyses

44   0   0.0 ( 0 )
 نشر من قبل Daniel Almeida Fagundes
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a novel representation for the Martins real-part formula without the full scaling property, an almost model-independent description of the proton-proton differential cross section data at high energies (19.4 GeV - 62.5 GeV) is obtained. In the impact parameter and eikonal frameworks, the extracted inelastic overlap function presents a peripheral effect (tail) above 2 fm and the extracted opacity function is characterized by a zero (change of sign) in the momentum transfer space, confirming results from previous model-independent analyses. Analytical parametrization for these empirical results are introduced and discussed. The importance of investigations on the inverse problems in high-energy elastic hadron scattering is stressed and the relevance of the proposed representation is commented. A short critical review on the use of Martins formula is also presented.

قيم البحث

اقرأ أيضاً

A model-independent treatment of dark-matter particle elastic scattering has been developed, yielding the most general interaction for WIMP-nucleon low-energy scattering, and the resulting amplitude has been embedded in the nucleus, taking into accou nt the selection rules imposed by parity and time-reversal. One finds that, in contrast to the usual spin-independent/spin-dependent (SI/SD) formulation, the resulting cross section contains six independent nuclear response functions, three of which are associated with possible velocity-dependent interactions. We find that current experiments are four orders of magnitude more sensitive to derivative couplings than is apparent in the standard SI/SD treatment, which necessarily associates such interactions with cross sections proportional to the square of the WIMP velocity relative to the nuclear center of mass.
We present for the first time a master formula for $varepsilon/varepsilon$, the ratio probing direct CP violation in $K to pipi$ decays, valid in any theory beyond the Standard Model (BSM). The formula makes use of hadronic matrix elements of BSM ope rators calculated recently in the Dual QCD approach and the ones of the SM operators from lattice QCD. We emphasize the large impact of several scalar and tensor BSM operators in the context of the emerging $varepsilon/varepsilon$ anomaly. We have implemented the results in the open source code flavio.
We present up-to-date constraints on a generic Higgs parameter space. An accurate assessment of these exclusions must take into account statistical, and potentially signal, fluctuations in the data currently taken at the LHC. For this, we have constr ucted a straightforward statistical method for making full use of the data that is publicly available. We show that, using the expected and observed exclusions which are quoted for each search channel, we can fully reconstruct likelihood profiles under very reasonable and simple assumptions. Even working with this somewhat limited information, we show that our method is sufficiently accurate to warrant its study and advocate its use over more naive prescriptions. Using this method, we can begin to narrow in on the remaining viable parameter space for a Higgs-like scalar state, and to ascertain the nature of any hints of new physics---Higgs or otherwise---appearing in the data.
Based on reflection symmetry in the reaction plane, it is shown that measuring the transverse spin-transfer coefficient $K_{yy}$ in the $bar{K}N to KXi$ reaction directly determines the parity of the produced cascade hyperon in a model-independent wa y as $pi_Xi =K_{yy}$, where $pi_Xi =pm 1$ is the parity. This result based on Bohrs theorem provides a completely general, universal relationship that applies to the entire hyperon spectrum. A similar expression is obtained for the photoreaction $gamma N to K K Xi$ by measuring both the double-polarization observable $K_{yy}$ and the photon-beam asymmetry $Sigma$. Regarding the feasibility of such experiments, it is pointed out that the self-analyzing property of the $Xi$s can be invoked, thus requiring only a polarized nucleon target.
The entanglement entropy of two-body elastic scattering at high energies is studied by using the model-independent Levy imaging method for investigating the hadron structure. It is considered the finite entropy in the momentum Hilbert space properly regularized and results are compared to recent evaluation using the diffraction peak approximation. We present the entropy for RHIC, Tevatron and LHC energies pointing out the underlying uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا