ترغب بنشر مسار تعليمي؟ اضغط هنا

Laplacian growth in self-consistent Laplacian field : Effect of the long-range interparticle interactions on the fractal dimension of structures formed by their aggregation-limited diffusion

44   0   0.0 ( 0 )
 نشر من قبل Etienne Brion
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically simulate the dynamics of aggregation of interacting atomic clusters deposited on a surface. We show that the shape of the structures resulting from their aggregation-limited random walk is affected by the presence of a binary interparticle Laplacian potential due to, for instance, the surface stress field. We characterize the morphologies we obtain by their Hausdorff fractal dimension as well as the so-called external fractal dimension, which appears more sensitive to the potential. We demonstrate the relevance of our model by comparing it to previously published experimental results for antymony and silver clusters deposited onto graphite surface.

قيم البحث

اقرأ أيضاً

We introduce coarse-grained hydrodynamic equations of motion for diffusion-annihilation system with a power-law long-range interaction. By taking into account fluctuations of the conserved order parameter - charge density - we derive an analytically solvable approximation for the nonconserved order parameter - total particle density. Asymptotic solutions are obtained for the case of random Gaussian initial conditions and for system dimensionality $d geq 2$. Large-t, intermediate-t and small-t asymptotics were calculated and compared with existing scaling theories, exact results and simulation data.
We consider Laplacian Growth of self-similar domains in different geometries. Self-similarity determines the analytic structure of the Schwarz function of the moving boundary. The knowledge of this analytic structure allows us to derive the integral equation for the conformal map. It is shown that solutions to the integral equation obey also a second order differential equation which is the one dimensional Schroedinger equation with the sinh inverse square potential. The solutions, which are expressed through the Gauss hypergeometric function, characterize the geometry of self-similar patterns in a wedge. We also find the potential for the Coulomb gas representation of the self-similar Laplacian growth in a wedge and calculate the corresponding free energy.
In this paper, we explore different Markovian random walk strategies on networks with transition probabilities between nodes defined in terms of functions of the Laplacian matrix. We generalize random walk strategies with local information in the Lap lacian matrix, that describes the connections of a network, to a dynamics determined by functions of this matrix. The resulting processes are non-local allowing transitions of the random walker from one node to nodes beyond its nearest neighbors. We find that only two types of Laplacian functions are admissible with distinct behaviors for long-range steps in the infinite network limit: type (i) functions generate Brownian motions, type (ii) functions Levy flights. For this asymptotic long-range step behavior only the lowest non-vanishing order of the Laplacian function is relevant, namely first order for type (i), and fractional order for type (ii) functions. In the first part, we discuss spectral properties of the Laplacian matrix and a series of relations that are maintained by a particular type of functions that allow to define random walks on any type of undirected connected networks. Once described general properties, we explore characteristics of random walk strategies that emerge from particular cases with functions defined in terms of exponentials, logarithms and powers of the Laplacian as well as relations of these dynamics with non-local strategies like Levy flights and fractional transport. Finally, we analyze the global capacity of these random walk strategies to explore networks like lattices and trees and different types of random and complex networks.
We consider the effect of electron-electron interactions on a voltage biased quantum point contact in the tunneling regime used as a detector of a nearby qubit. We model the leads of the quantum point contact as Luttinger liquids, incorporate the eff ects of finite temperature and analyze the detection-induced decoherence rate and the detector efficiency, $Q$. We find that interactions generically reduce the induced decoherence along with the detectors efficiency, and strongly affect the relative strength of the decoherence induced by tunneling and that induced by interactions with the local density. With increasing interaction strength, the regime of quantum-limited detection ($Q=1$) is shifted to increasingly lower temperatures or higher bias voltages respectively. For small to moderate interaction strengths, $Q$ is a monotonously decreasing function of temperature as in the non-interacting case. Surprisingly, for sufficiently strong interactions we identify an intermediate temperature regime where the efficiency of the detector increases with rising temperature.
We have developed a technique utilizing a double quantum well heterostructure that allows us to study the effect of a nearby ground-plane on the metallic behavior in a GaAs two-dimensional hole system (2DHS) in a single sample and measurement cool-do wn, thereby maintaining a constant disorder potential. In contrast to recent measurements of the effect of ground-plane screening of the long-range Coulomb interaction in the insulating regime, we find surprisingly little effect on the metallic behavior when we change the distance between the 2DHS and the nearby ground-plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا