ترغب بنشر مسار تعليمي؟ اضغط هنا

GaN/AlGaN microcavities for enhancement of non linear optical effects

114   0   0.0 ( 0 )
 نشر من قبل Concita Sibilia
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study on the design, growth and optical characterization of a GaN/AlGaN microcavity for the enhancement of second order non linear effects. The proposed system exploits the high second order nonlinear optical response of GaN due to the non centrosymmetric crystalline structure of this material. It consists of a GaN cavity embedded between two GaN/AlGaN Distributed Bragg Reflectors designed for a reference mode coincident with a second harmonic field generated in the near UV region (~ 400 nm). Critical issues for this target are the crystalline quality of the material, together with sharp and abrupt interfaces among the multi-stacked layers. A detailed investigation on the growth evolution of GaN and AlGaN epilayers in such a configuration is reported, with the aim to obtain high quality factor in the desiderated spectral range. Non linear second harmonic generation experiments have been performed and the results were compared with bulk GaN sample, highlighting the effect of the microcavity on the non linear optical response of this material.



قيم البحث

اقرأ أيضاً

The magneto-gyrotropic photogalvanic and spin-galvanic effects are observed in (0001)-oriented GaN/AlGaN heterojunctions excited by terahertz radiation. We show that free-carrier absorption of linearly or circularly polarized terahertz radiation in l ow-dimensional structures causes an electric photocurrent in the presence of an in-plane magnetic field. Microscopic mechanisms of these photocurrents based on spin-related phenomena are discussed. Properties of the magneto-gyrotropic and spin-galvanic effects specific for hexagonal heterostructures are analyzed.
We present a joint theoretical and experimental characterization of thermo-refractive noise in high quality factor ($Q$), small mode volume ($V$) optical microcavities. Analogous to well-studied stability limits imposed by Brownian motion in macrosco pic Fabry-Perot resonators, microcavity thermo-refractive noise gives rise to a mode volume-dependent maximum effective quality factor. State-of-the-art fabricated microcavities are found to be within one order of magnitude of this bound. We confirm the assumptions of our theory by measuring the noise spectrum of high-$Q/V$ silicon photonic crystal cavities and apply our results to estimate the optimal performance of proposed room temperature, all-optical qubits using cavity-enhanced bulk material nonlinearities.
218 - V.Zayets , H.Saito , S.Yuasa 2011
The origin and properties of the transverse non-reciprocal magneto-optical (nMO) effect were studied. The transverse nMO effect occurs in the case when light propagates perpendicularly to the magnetic field. It was demonstrated that light can experie nce the transverse nMO effect only when it propagates in the vicinity of a boundary between two materials and the optical field at least in one material is evanescent. The transverse nMO effect is pronounced in the cases of surface plasmons and waveguiding modes. The magnitude of the transverse nMO effect is comparable to or greater than the magnitude of the longitudinal nMO effect. In the case of surface plasmons propagating at a boundary between the transition metal and the dielectric it is possible to magnify the transverse nMO effect and the magneto-optical figure-of-merit may increase from a few percents to above 100%. The scalar dispersion relation, which describes the transverse MO effect in cases of waveguide modes and surface plasmons propagating in a multilayer MO slab, was derived.
The electronic properties of heterojunction electron gases formed in GaN/AlGaN core/shell nanowires with hexagonal and triangular cross-sections are studied theoretically. We show that at nanoscale dimensions, the non-polar hexagonal system exhibits degenerate quasi-one-dimensional electron gases at the hexagon corners, which transition to a core-centered electron gas at lower doping. In contrast, polar triangular core/shell nanowires show either a non-degenerate electron gas on the polar face or a single quasi-one-dimensional electron gas at the corner opposite the polar face, depending on the termination of the polar face. More generally, our results indicate that electron gases in closed nanoscale systems are qualitatively different from their bulk counterparts.
GaN and the heterostructures are attractive in condensed matter science and applications for electronic devices. We measure the electron transport in GaN/AlGaN field-effect transistors (FETs) at cryogenic temperature. We observe formation of quantum dots in the conduction channel near the depletion of the 2-dimensional electron gas (2DEG). Multiple quantum dots are formed in the disordered potential induced by impurities in the FET conduction channel. We also measure the gate insulator dependence of the transport properties. These results can be utilized for the development of quantum dot devices utilizing GaN/AlGaN heterostructures and evaluation of the impurities in GaN/AlGaN FET channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا