ترغب بنشر مسار تعليمي؟ اضغط هنا

Interlayer binding energy of graphite -- A direct experimental determination

177   0   0.0 ( 0 )
 نشر من قبل Zhe Liu Jefferson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite interlayer binding energy is one of the most important material properties for graphite, there is still lacking report on its direct experimental determination. In this paper, we present a novel experimental method to directly measure the interlayer binding energy of highly oriented pyrolytic graphite (HOPG). The obtained values of the binding energy are 0.27($pm $0.02)J/m$^{2}$, which can serve as a benchmark for other theoretical and experimental works.

قيم البحث

اقرأ أيضاً

We describe an experimental technique to measure the chemical potential, $mu$, in atomically thin layered materials with high sensitivity and in the static limit. We apply the technique to a high quality graphene monolayer to map out the evolution of $mu$ with carrier density throughout the N=0 and N=1 Landau levels at high magnetic field. By integrating $mu$ over filling factor, $ u$, we obtain the ground state energy per particle, which can be directly compared with numerical calculations. In the N=0 Landau level, our data show exceptional agreement with numerical calculations over the whole Landau level without adjustable parameters, as long as the screening of the Coulomb interaction by the filled Landau levels is accounted for. In the N=1 Landau level, comparison between experimental and numerical data reveals the importance of valley anisotropic interactions and the presence of valley-textured electron solids near odd filling.
The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach toward measuring the exciton binding energy of monolayer WS2 with linear differential transmissio n spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71eV around K valley in the Brillouin zone. The trion binding energy of 34meV, two-photon absorption cross section 4X10^{4}cm^{2}W^{-2}S^{-1} at 780nm and exciton-exciton annihilation rate around 0.5cm^{2}/s are experimentally obtained.
Interlayer tunneling in graphite mesa-type structures is studied at a strong in-plane magnetic field $H$ up to 55 T and low temperature $T=1.4$ K. The tunneling spectrum $dI/dV$ vs. $V$ has a pronounced peak at a finite voltage $V_0$. The peak positi on $V_0$ increases linearly with $H$. To explain the experiment, we develop a theoretical model of graphite in the crossed electric $E$ and magnetic $H$ fields. When the fields satisfy the resonant condition $E=vH$, where $v$ is the velocity of the two-dimensional Dirac electrons in graphene, the wave functions delocalize and give rise to the peak in the tunneling spectrum observed in the experiment.
Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros --- complex singularities of the free energy in systems of finite size --- have led to a unified un derstanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena. Recently, Lee-Yang zeros have been used to characterize non-equilibrium processes such as dynamical phase transitions in quantum systems after a quench or dynamic order-disorder transitions in glasses. Here, we experimentally realize a scheme for determining Lee-Yang zeros in such non-equilibrium settings. We extract the dynamical Lee-Yang zeros of a stochastic process involving Andreev tunneling between a normal-state island and two superconducting leads from measurements of the dynamical activity along a trajectory. From the short-time behavior of the Lee-Yang zeros, we predict the large-deviation statistics of the activity which is typically difficult to measure. Our method paves the way for further experiments on the statistical mechanics of many-body systems out of equilibrium.
Reported values (0.2 MPa ~ 7.0 GPa) of the interlayer shear strength (ISS) of graphite are very dispersed. The main challenge to obtain a reliable value of ISS is the lack of precise experimental methods. Here we present a novel experimental approach to measure the ISS, and obtain the value as 0.14 GPa. Our result can serve as an important basis for understanding mechanical behavior of graphite or graphene-based materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا