ﻻ يوجد ملخص باللغة العربية
Asteroseismology of stars that exhibit solar-like oscillations are enjoying a growing interest with the wealth of observational results obtained with the CoRoT and Kepler missions. In this framework, scaling laws between asteroseismic quantities and stellar parameters are becoming essential tools to study a rich variety of stars. However, the physical underlying mechanisms of those scaling laws are still poorly known. Our objective is to provide a theoretical basis for the scaling between the frequency of the maximum in the power spectrum ($ u_{rm max}$) of solar-like oscillations and the cut-off frequency ($ u_{rm c}$). Using the SoHO GOLF observations together with theoretical considerations, we first confirm that the maximum of the height in oscillation power spectrum is determined by the so-called emph{plateau} of the damping rates. The physical origin of the plateau can be traced to the destabilizing effect of the Lagrangian perturbation of entropy in the upper-most layers which becomes important when the modal period and the local thermal relaxation time-scale are comparable. Based on this analysis, we then find a linear relation between $ u_{rm max}$ and $ u_{rm c}$, with a coefficient that depends on the ratio of the Mach number of the exciting turbulence to the third power to the mixing-length parameter.
Scaling relations between asteroseismic quantities and stellar parameters are essential tools for studying stellar structure and evolution. We will address two of them, namely, the relation between the large frequency separation ($Delta u$) and the
We have reviewed the current status of the inclusive neutrino scattering from $^{12}$C in the low energy region corresponding to the neutrino beams from the pion, muon and kaon decaying at rest. The theoretical calculations of total cross sections in
The lithium abundances in a few percent of giants exceed the value predicted by the standard stellar evolution models, and the mechanisms of Li enhancement are still under debate. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)
We report on 13 new high-precision measurements of stellar diameters for low-mass dwarfs obtained by means of near-infrared long-baseline interferometry with PIONIER at the Very Large Telescope Interferometer. Together with accurate parallaxes from G
By analyzing 482 pb$^{-1}$ of $e^+e^-$ collision data collected at the center-of-mass energy $sqrt s=4.009$ GeV with the BESIII detector, we measure the %absolute branching fractions for the semi-leptonic decays $D_{s}^{+}to phi e^{+} u_{e}$, $phi mu