ﻻ يوجد ملخص باللغة العربية
We present an analysis comparing the properties of 45 giant molecular clouds (GMCs) in M33 and the atomic hydrogen (HI) with which they are associated. High-resolution VLA observations are used to measure the properties of HI in the vicinity of GMCs and in regions where GMCs have not been detected. The majority of molecular clouds coincide with a local peak in the surface density of atomic gas, though 7% of GMCs in the sample are not associated with high-surface density atomic gas. The mean HI surface density in the vicinity of GMCs is 10 M_sol/pc^2 and tends to increase with GMC mass as Sigma_HI ~ M_GMC^0.27. 39 of the 45 HI regions surrounding GMCs have linear velocity gradients of ~0.05 km/s/pc. If the linear gradients previously observed in the GMCs result from rotation, then 53% are counterrotating with respect to the local HI. If the linear gradients in these local HI regions are also from rotation, 62% are counterrotating with respect to the galaxy. If magnetic braking reduced the angular momentum of GMCs early in their evolution, the angular velocity of GMCs would be roughly one order of magnitude lower than what is observed. Based on our observations, we consider the possibility that GMCs may not be rotating. Atomic gas not associated with GMCs has gradients closer to 0.03 km/s/pc, suggesting that events occur during the course of GMC evolution that may increase the shear in the atomic gas.
We present a detailed analysis comparing the velocity fields in molecular clouds and the atomic gas that surrounds them in order to address the origin of the gradients. To that end, we present first-moment intensity-weighted velocity maps of the mole
We use high spatial resolution (~7pc) CARMA observations to derive detailed properties for 8 giant molecular clouds (GMCs) at a galactocentric radius corresponding to approximately two CO scale lengths, or ~0.5 optical radii (r25), in the Local Group
The properties of tidally induced arms provide a means to study molecular cloud formation and the subsequent star formation under environmental conditions which in principle are different from quasi stationary spiral arms. We report the properties of
We present the first interferometric CO(J=1->0) map of the entire H-alpha disk of M33. The 13 diameter synthesized beam corresponds to a linear resolution of 50 pc, sufficient to distinguish individual giant molecular clouds (GMCs). From these data w
We report molecular line and continuum observations toward one of the most massive giant molecular clouds (GMCs), GMC-16, in M33 using ALMA with an angular resolution of 0$$44 $times$ 0$$27 ($sim$2 pc $times$ 1 pc). We have found that the GMC is comp