ترغب بنشر مسار تعليمي؟ اضغط هنا

Present Constraints on the H-dibaryon at the Physical Point from Lattice QCD

157   0   0.0 ( 0 )
 نشر من قبل Huey-Wen Lin
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The current constraints from lattice QCD on the existence of the H-dibaryon are discussed. With only two significant lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the forms of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, we consider the constraints on the H-dibaryon imposed by two simple chiral extrapolations. In both instances, the extrapolation to the physical pion mass allows for a bound H-dibaryon or a near-threshold scattering state. Further lattice QCD calculations are required to clarify this situation.

قيم البحث

اقرأ أيضاً

The nucleon($N$)-Omega($Omega$) system in the S-wave and spin-2 channel ($^5$S$_2$) is studied from the (2+1)-flavor lattice QCD with nearly physical quark masses ($m_pi simeq 146$~MeV and $m_K simeq 525$~MeV). The time-dependent HAL QCD method is em ployed to convert the lattice QCD data of the two-baryon correlation function to the baryon-baryon potential and eventually to the scattering observables. The $NOmega$($^5$S$_2$) potential, obtained under the assumption that its couplings to the D-wave octet-baryon pairs are small, is found to be attractive in all distances and to produce a quasi-bound state near unitarity: In this channel, the scattering length, the effective range and the binding energy from QCD alone read $a_0= 5.30(0.44)(^{+0.16}_{-0.01})$~fm, $r_{rm eff} = 1.26(0.01)(^{+0.02}_{-0.01})$~fm, $B = 1.54(0.30)(^{+0.04}_{-0.10})$~MeV, respectively. Including the extra Coulomb attraction, the binding energy of $pOmega^-$($^5$S$_2$) becomes $B_{pOmega^-} = 2.46(0.34)(^{+0.04}_{-0.11})$~MeV. Such a spin-2 $pOmega^-$ state could be searched through two-particle correlations in $p$-$p$, $p$-nucleus and nucleus-nucleus collisions.
101 - S.R. Beane , E. Chang , W. Detmold 2010
We present evidence for the existence of a bound H-dibaryon, an I=0, J=0, s=-2 state with valence quark structure uuddss, at a pion mass of m_pi ~ 389 MeV. Using the results of Lattice QCD calculations performed on four ensembles of anisotropic clove r gauge-field configurations, with spatial extents of L ~ 2.0, 2.5, 3.0 and 3.9 fm at a spatial lattice spacing of b ~ 0.123 fm, we find an H-dibaryon bound by B = 16.6 +- 2.1 +- 4.6 MeV at a pion mass of m_pi ~ 389 MeV.
115 - C. Alexandrou 2020
We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the stra nge and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain final results, while the other two are used for assessing volume effects. The pseudoscalar form factor is also computed using these ensembles. We examine the momentum dependence of these form factors as well as relations based on pion pole dominance and the partially conserved axial-vector current hypothesis.
We report a state-of-the-art lattice calculation of the isovector quark transversity distribution of the proton at the physical pion mass. Within the framework of large-momentum effective theory (LaMET), we compute the transversity quasi-distribution s using clover valence fermions on 2+1+1-flavor (up/down, strange, charm) HISQ-lattice configurations with boosted proton momenta as large as 3.0~GeV. The relevant lattice matrix elements are nonperturbatively renormalized in regularization-independent momentum-subtraction (RI/MOM) scheme and systematically matched to the physical transversity distribution. With high statistics, large proton momenta and meticulous control of excited-state contamination, we provide the best theoretical prediction for the large-$x$ isovector quark transversity distribution, with better precision than the most recent global analyses of experimental data. Our result also shows that the sea quark asymmetry in the proton transversity distribution is consistent with zero, which has been assumed in all current global analyses.
We present an investigation of the electromagnetic pion form factor, $F_pi(Q^2)$, at small values of the four-momentum transfer $Q^2$ ($lesssim 0.25$ GeV$^2$), based on the gauge configurations generated by European Twisted Mass Collaboration with $N _f = 2$ twisted-mass quarks at maximal twist including a clover term. Momentum is injected using non-periodic boundary conditions and the calculations are carried out at a fixed lattice spacing ($a simeq 0.09$ fm) and with pion masses equal to its physical value, 240 MeV and 340 MeV. Our data are successfully analyzed using Chiral Perturbation Theory at next-to-leading order in the light-quark mass. For each pion mass two different lattice volumes are used to take care of finite size effects. Our final result for the squared charge radius is $langle r^2 rangle_pi = 0.443~(29)$ fm$^2$, where the error includes several sources of systematic errors except the uncertainty related to discretization effects. The corresponding value of the SU(2) chiral low-energy constant $overline{ell}_6$ is equal to $overline{ell}_6 = 16.2 ~ (1.0)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا