ترغب بنشر مسار تعليمي؟ اضغط هنا

Broad-Line Reverberation in the Kepler-Field Seyfert Galaxy Zw 229-015

56   0   0.0 ( 0 )
 نشر من قبل A. J. Barth
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from H-beta reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3m telescope during the dark runs from June through December 2010, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of 2 change in broad H-beta flux. From cross-correlation measurements, we find that the H-beta light curve has a rest-frame lag of 3.86(+0.69,-0.90) days with respect to the V-band continuum variations. We also measure reverberation lags for H-alpha and H-gamma and find an upper limit to the H-delta lag. Combining the H-beta lag measurement with a broad H-beta width of sigma = 1590+/-47 km/s measured from the root-mean-square variability spectrum, we obtain a virial estimate of M_BH = 1.00(-0.24,+0.19)*10^7 solar masses for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.


قيم البحث

اقرأ أيضاً

We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 galaxy Mrk 335, collected over a 120-day span in the fall of 2010. From these data we measure the lag in the He II 4686 broa d emission line relative to the optical continuum to be 2.7 pm 0.6 days and the lag in the Hbeta 4861 broad emission line to be 13.9 pm 0.9 days. Combined with the line width, the He II lag yields a black hole mass, MBH = (2.6 pm 0.8)times 10^7 Msun. This measurement is consistent with measurements made using the Hbeta 4861 line, suggesting that the He II emission originates in the same region as Hbeta, but at a much smaller radius. This constitutes the first robust lag measurement for a high-ionization line in a narrow-line Seyfert 1 galaxy.
A method is proposed for measuring the size of the broad emission line region (BLR) in quasars using broadband photometric data. A feasibility study, based on numerical simulations, points to the advantages and pitfalls associated with this approach. The method is applied to a subset of the Palomar-Green quasar sample for which independent BLR size measurements are available. An agreement is found between the results of the photometric method and the spectroscopic reverberation mapping technique. Implications for the measurement of BLR sizes and black hole masses for numerous quasars in the era of large surveys are discussed.
We carried out photometric and spectroscopic observations of the well-studied broad-line radio galaxy 3C 120 with the Las Cumbres Observatory (LCO) global robotic telescope network from 2016 December to 2018 April as part of the LCO AGN Key Project o n Reverberation Mapping of Accretion Flows. Here, we present both spectroscopic and photometric reverberation mapping results. We used the interpolated cross-correlation function (ICCF) to perform multiple-line lag measurements in 3C 120. We find the H$gamma$, He II $lambda 4686$, H$beta$ and He I $lambda 5876$ lags of $tau_{text{cen}} = 18.8_{-1.0}^{+1.3}$, $2.7_{-0.8}^{+0.7}$, $21.2_{-1.0}^{+1.6}$, and $16.9_{-1.1}^{+0.9}$ days respectively, relative to the V-band continuum. Using the measured lag and rms velocity width of the H$beta$ emission line, we determine the mass of the black hole for 3C 120 to be $M=left(6.3^{+0.5}_{-0.3}right)times10^7,(f/5.5)$ M$_odot$. Our black hole mass measurement is consistent with similar previous studies on 3C 120, but with small uncertainties. In addition, velocity-resolved lags in 3C 120 show a symmetric pattern across the H$beta$ line, 25 days at line centre decreasing to 17 days in the line wings at $pm4000$ km s$^{-1}$. We also investigate the inter-band continuum lags in 3C 120 and find that they are generally consistent with $tauproptolambda^{4/3}$ as predicted from a geometrically-thin, optically-thick accretion disc. From the continuum lags, we measure the best fit value $tau_{rm 0} = 3.5pm 0.2$ days at $lambda_{rm 0} = 5477$A. It implies a disc size a factor of $1.6$ times larger than prediction from the standard disc model with $L/L_{rm Edd} = 0.4$. This is consistent with previous studies in which larger than expected disc sizes were measured.
169 - K. D. Denney 2009
A detailed analysis of the data from a high sampling rate, multi-month reverberation mapping campaign, undertaken primarily at MDM Observatory with supporting observations from telescopes around the world, reveals that the Hbeta emission region withi n the broad line regions (BLRs) of several nearby AGNs exhibit a variety of kinematic behaviors. While the primary goal of this campaign was to obtain either new or improved Hbeta reverberation lag measurements for several relatively low luminosity AGNs (presented in a separate work), we were also able to unambiguously reconstruct velocity-resolved reverberation signals from a subset of our targets. Through high cadence spectroscopic monitoring of the optical continuum and broad Hbeta emission line variations observed in the nuclear regions of NGC 3227, NGC 3516, and NGC 5548, we clearly see evidence for outflowing, infalling, and virialized BLR gas motions, respectively.
Black Hole Mass (M_BH) estimation in quasars, especially at high redshift, involves use of single epoch spectra with s/n and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled w ith an estimate of the radius of the broad line region this yields M_BH. The radius of the broad line region (BLR) may be inferred from an extrapolation of the correlation between source luminosity and reverberation derived r_BLR measures (the so-called Kaspi relation involving about 60 low z sources). We are exploring a different method for estimating r_BLR directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r_BLR estimates that come from our method and from reverberation mapping. Our photoionization method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (AlIII1860/SiIII]1892, CIV1549/AlIII1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter and r_BLR and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r_BLR values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M_BH for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H beta, therefore providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا