ﻻ يوجد ملخص باللغة العربية
We study the necessary conditions for bosons composed of two distinguishable fermions to exhibit bosonic-like behaviour. We base our analysis on tools of quantum information theory such as entanglement and the majorization criterion for probability distributions. In particular we scrutinize a recent interesting hypothesis by C. K. Law in the Ref. Phys. Rev. A 71, 034306 (2005) that suggests that the amount of entanglement between the constituent fermions is related to the bosonic properties of the composite boson. We show that a large amount of entanglement does not necessarily imply a good boson-like behaviour by constructing an explicit counterexample. Moreover, we identify more precisely the role entanglement may play in this situation.
We demonstrate how boson sampling with photons of partial distinguishability can be expressed in terms of interference of fewer photons. We use this observation to propose a classical algorithm to simulate the output of a boson sampler fed with photo
Boson Sampling is the problem of sampling from the same distribution as indistinguishable single photons at the output of a linear optical interferometer. It is an example of a non-universal quantum computation which is believed to be feasible in the
Too much noise kills entanglement. This is the main problem in its production and transmission. We use a handy approach to indicate noise resistance of entanglement of a bi-partite system described by $dtimes d$ Hilbert space. Our analysis uses a geo
Composite bosons made of two bosonic constituents exhibit deviations from ideal bosonic behavior due to their substructure. This deviation is reflected by the normalization ratio of the quantum state of N composites. We find a set of saturable, effic
We consider two two-level systems (TLSs) coupled to the vacuum of guided modes confined in a rectangular waveguide. Two TLSs are fixed at different points in the waveguide and initially share an excitation. For the energy separation of the TLSs far a