ﻻ يوجد ملخص باللغة العربية
This paper presents feasible experimental schemes to realize controlled teleportation protocols via photonic Faraday rotations in low-Q cavities. The schemes deal with controlled teleportation of superposition states and two-particle entanglement of atomic states. The information is encoded in three-level atoms in a lambda configuration trapped inside coupled cavities by optical fibers. Also, we estimate the success probability and the current feasibility of the schemes.
We propose an experiment to generate deterministic entanglement between separate nitrogen vacancy (NV) centers mediated by the mode of a photonic crystal cavity. Using numerical simulations the applicability and robustness of the entanglement operati
Photonic bandgap cavities are prime solid-state systems to investigate light-matter interactions in the strong coupling regime. However, as the cavity is defined by the geometry of the periodic dielectric pattern, cavity control in a monolithic struc
We demonstrate an experimental realization of remote state preparation via the quantum teleportation algorithm, using an entangled photon pair in the polarization degree of freedom as the quantum resource. The input state is encoded on the path of on
Quantum teleportation is a fundamental concept in quantum physics which now finds important applications at the heart of quantum technology including quantum relays, quantum repeaters and linear optics quantum computing (LOQC). Photonic implementatio
We study a (k,m)-threshold controlling scheme for controlled quantum teleportation. A standard polynomial coding over GF(p) with prime p > m-1 needs to distribute a d-dimensional qudit with d >= p to each controller for this purpose. We propose a sch