ترغب بنشر مسار تعليمي؟ اضغط هنا

Final Analysis of Proton Form Factor Ratio Data at $mathbf{Q^2 = 4.0}$, 4.8 and 5.6 GeV$mathbf{^2}$

234   0   0.0 ( 0 )
 نشر من قبل Andrew J. R. Puckett
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise measurements of the proton electromagnetic form factor ratio $R = mu_p G_E^p/G_M^p$ using the polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon structure by revealing the strong decrease of $R$ with momentum transfer $Q^2$ for $Q^2 gtrsim 1$ GeV$^2$, in strong disagreement with previous extractions of $R$ from cross section measurements. In particular, the polarization transfer results have exposed the limits of applicability of the one-photon-exchange approximation and highlighted the role of quark orbital angular momentum in the nucleon structure. The GEp-II experiment in Jefferson Labs Hall A measured $R$ at four $Q^2$ values in the range 3.5 GeV$^2 le Q^2 le 5.6$ GeV$^2$. A possible discrepancy between the originally published GEp-II results and more recent measurements at higher $Q^2$ motivated a new analysis of the GEp-II data. This article presents the final results of the GEp-II experiment, including details of the new analysis, an expanded description of the apparatus and an overview of theoretical progress since the original publication. The key result of the final analysis is a systematic increase in the results for $R$, improving the consistency of the polarization transfer data in the high-$Q^2$ region. This increase is the result of an improved selection of elastic events which largely removes the systematic effect of the inelastic contamination, underestimated by the original analysis.



قيم البحث

اقرأ أيضاً

Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleons quark constituents; indeed, recent proton data have a ttracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the non-perturbative regime.
We report on the measurement of the beam asymmetry $Sigma$ for the reactions $vec{gamma}prightarrow peta$ and $vec{gamma}p rightarrow peta^{prime}$ from the GlueX experiment, using an 8.2--8.8 GeV linearly polarized tagged photon beam incident on a l iquid hydrogen target in Hall D at Jefferson Lab. These measurements are made as a function of momentum transfer $-t$, with significantly higher statistical precision than our earlier $eta$ measurements, and are the first measurements of $eta^{prime}$ in this energy range. We compare the results to theoretical predictions based on $t$--channel quasi-particle exchange. We also compare the ratio of $Sigma_{eta}$ to $Sigma_{eta^{prime}}$ to these models, as this ratio is predicted to be sensitive to the amount of $sbar{s}$ exchange in the production. We find that photoproduction of both $eta$ and $eta^{prime}$ is dominated by natural parity exchange with little dependence on $-t$.
131 - G. Ron , X. Zhan , J. Glister 2011
We present an updated extraction of the proton electromagnetic form factor ratio, mu_p G_E/G_M, at low Q^2. The form factors are sensitive to the spatial distribution of the proton, and precise measurements can be used to constrain models of the prot on. An improved selection of the elastic events and reduced background contributions yielded a small systematic reduction in the ratio mu_p G_E/G_M compared to the original analysis.
We report a new, high-precision measurement of the proton elastic form factor ratio mu_p G_E/G_M for the four-momentum transfer squared Q^2 = 0.3-0.7 (GeV/c)^2. The measurement was performed at Jefferson Lab (JLab) in Hall A using recoil polarimetry. With a total uncertainty of approximately 1%, the new data clearly show that the deviation of the ratio mu_p G_E/G_M from unity observed in previous polarization measurements at high Q^2 continues down to the lowest Q^2 value of this measurement. The updated global fit that includes the new results yields an electric (magnetic) form factor roughly 2% smaller (1% larger) than the previous global fit in this Q^2 range. We obtain new extractions of the proton electric and magnetic radii, which are <r^2_E>^(1/2)=0.875+/-0.010 fm and <r^2_M>^(1/2)=0.867+/-0.020 fm. The charge radius is consistent with other recent extractions based on the electron-proton interaction, including the atomic hydrogen Lamb shift measurements, which suggests a missing correction in the comparison of measurements of the proton charge radius using electron probes and the recent extraction from the muonic hydrogen Lamb shift.
Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76 GeV^2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q^2-range, and point to their non-trivial behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا